|
import gradio as gr |
|
import pandas as pd |
|
import numpy as np |
|
from prophet import Prophet |
|
import plotly.graph_objs as go |
|
import requests |
|
from sklearn.ensemble import RandomForestClassifier |
|
from textblob import TextBlob |
|
import yfinance as yf |
|
import re |
|
|
|
|
|
CRYPTO_SYMBOLS = ["BTC-USD", "ETH-USD", "LTC-USD", "XRP-USD"] |
|
STOCK_SYMBOLS = ["AAPL", "MSFT", "GOOGL", "AMZN"] |
|
INTERVAL_OPTIONS = ["1h", "1d", "1wk"] |
|
DEFAULT_FORECAST_STEPS = 24 |
|
DEFAULT_DAILY_SEASONALITY = True |
|
DEFAULT_WEEKLY_SEASONALITY = True |
|
DEFAULT_YEARLY_SEASONALITY = False |
|
DEFAULT_SEASONALITY_MODE = "additive" |
|
DEFAULT_CHANGEPOINT_PRIOR_SCALE = 0.05 |
|
RANDOM_FOREST_PARAMS = { |
|
"n_estimators": 100, |
|
"max_depth": 10, |
|
"random_state": 42 |
|
} |
|
|
|
|
|
def fetch_crypto_data(symbol, interval="1h", limit=100): |
|
try: |
|
ticker = yf.Ticker(symbol) |
|
if interval == "1h": |
|
period = "1d" |
|
df = ticker.history(period=period, interval="1h") |
|
elif interval == "1d": |
|
df = ticker.history(period="1y", interval=interval) |
|
elif interval == "1wk": |
|
df = ticker.history(period="5y", interval=interval) |
|
else: |
|
raise ValueError("Invalid interval for yfinance.") |
|
if df.empty: |
|
raise Exception("No data returned from yfinance.") |
|
df.reset_index(inplace=True) |
|
df.rename(columns={"Datetime": "timestamp", "Open": "open", "High": "high", "Low": "low", "Close": "close", "Volume": "volume"}, inplace=True) |
|
df = df[["timestamp", "open", "high", "low", "close", "volume"]] |
|
return df.dropna() |
|
except Exception as e: |
|
raise Exception(f"Error fetching crypto data from yfinance: {e}") |
|
|
|
def fetch_stock_data(symbol, interval="1d"): |
|
try: |
|
ticker = yf.Ticker(symbol) |
|
df = ticker.history(period="1y", interval=interval) |
|
if df.empty: |
|
raise Exception("No data returned from yfinance.") |
|
df.reset_index(inplace=True) |
|
df.rename(columns={"Date": "timestamp", "Open": "open", "High": "high", "Low": "low", "Close": "close", "Volume": "volume"}, inplace=True) |
|
df = df[["timestamp", "open", "high", "low", "close", "volume"]] |
|
return df.dropna() |
|
except Exception as e: |
|
raise Exception(f"Error fetching stock data from yfinance: {e}") |
|
|
|
def fetch_sentiment_data(keyword): |
|
try: |
|
tweets = [ |
|
f"{keyword} is going to moon!", |
|
f"I hate {keyword}, it's trash!", |
|
f"{keyword} is amazing!" |
|
] |
|
sentiments = [TextBlob(tweet).sentiment.polarity for tweet in tweets] |
|
return sum(sentiments) / len(sentiments) if sentiments else 0 |
|
except Exception as e: |
|
print(f"Sentiment analysis error: {e}") |
|
return 0 |
|
|
|
|
|
def calculate_technical_indicators(df): |
|
if df.empty: |
|
return df |
|
|
|
delta = df['close'].diff() |
|
gain = (delta.where(delta > 0, 0)).rolling(window=14).mean() |
|
loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean() |
|
rs = gain / loss |
|
df['RSI'] = 100 - (100 / (1 + rs)) |
|
|
|
exp1 = df['close'].ewm(span=12, adjust=False).mean() |
|
exp2 = df['close'].ewm(span=26, adjust=False).mean() |
|
df['MACD'] = exp1 - exp2 |
|
df['Signal_Line'] = df['MACD'].ewm(span=9, adjust=False).mean() |
|
|
|
df['MA20'] = df['close'].rolling(window=20).mean() |
|
df['BB_upper'] = df['MA20'] + 2 * df['close'].rolling(window=20).std() |
|
df['BB_lower'] = df['MA20'] - 2 * df['close'].rolling(window=20).std() |
|
|
|
return df |
|
|
|
def create_technical_charts(df): |
|
if df.empty: |
|
return None, None, None |
|
|
|
fig1 = go.Figure() |
|
fig1.add_trace(go.Candlestick( |
|
x=df['timestamp'], |
|
open=df['open'], |
|
high=df['high'], |
|
low=df['low'], |
|
close=df['close'], |
|
name='Price' |
|
)) |
|
fig1.add_trace(go.Scatter(x=df['timestamp'], y=df['BB_upper'], name='Upper BB', line=dict(color='gray', dash='dash'))) |
|
fig1.add_trace(go.Scatter(x=df['timestamp'], y=df['BB_lower'], name='Lower BB', line=dict(color='gray', dash='dash'))) |
|
fig1.update_layout(title='Price and Bollinger Bands', xaxis_title='Date', yaxis_title='Price') |
|
|
|
fig2 = go.Figure() |
|
fig2.add_trace(go.Scatter(x=df['timestamp'], y=df['RSI'], name='RSI')) |
|
fig2.add_hline(y=70, line_dash="dash", line_color="red") |
|
fig2.add_hline(y=30, line_dash="dash", line_color="green") |
|
fig2.update_layout(title='RSI Indicator', xaxis_title='Date', yaxis_title='RSI') |
|
|
|
fig3 = go.Figure() |
|
fig3.add_trace(go.Scatter(x=df['timestamp'], y=df['MACD'], name='MACD')) |
|
fig3.add_trace(go.Scatter(x=df['timestamp'], y=df['Signal_Line'], name='Signal Line')) |
|
fig3.update_layout(title='MACD', xaxis_title='Date', yaxis_title='Value') |
|
|
|
return fig1, fig2, fig3 |
|
|
|
|
|
def prepare_data_for_prophet(df): |
|
if df.empty: |
|
return pd.DataFrame(columns=["ds", "y"]) |
|
df_prophet = df.rename(columns={"timestamp": "ds", "close": "y"}) |
|
return df_prophet[["ds", "y"]] |
|
|
|
def prophet_forecast(df_prophet, periods=10, freq="h", daily_seasonality=False, weekly_seasonality=False, yearly_seasonality=False, seasonality_mode="additive", changepoint_prior_scale=0.05): |
|
if df_prophet.empty: |
|
return pd.DataFrame(), "No data for Prophet." |
|
|
|
try: |
|
model = Prophet( |
|
daily_seasonality=daily_seasonality, |
|
weekly_seasonality=weekly_seasonality, |
|
yearly_seasonality=yearly_seasonality, |
|
seasonality_mode=seasonality_mode, |
|
changepoint_prior_scale=changepoint_prior_scale, |
|
) |
|
model.fit(df_prophet) |
|
future = model.make_future_dataframe(periods=periods, freq=freq) |
|
forecast = model.predict(future) |
|
return forecast, "" |
|
except Exception as e: |
|
return pd.DataFrame(), f"Forecast error: {e}" |
|
|
|
def prophet_wrapper(df_prophet, forecast_steps, freq, daily_seasonality, weekly_seasonality, yearly_seasonality, seasonality_mode, changepoint_prior_scale): |
|
if len(df_prophet) < 10: |
|
return pd.DataFrame(), "Not enough data for forecasting (need >=10 rows)." |
|
|
|
full_forecast, err = prophet_forecast( |
|
df_prophet, |
|
forecast_steps, |
|
freq, |
|
daily_seasonality, |
|
weekly_seasonality, |
|
yearly_seasonality, |
|
seasonality_mode, |
|
changepoint_prior_scale, |
|
) |
|
if err: |
|
return pd.DataFrame(), err |
|
|
|
future_only = full_forecast.loc[len(df_prophet):, ["ds", "yhat", "yhat_lower", "yhat_upper"]] |
|
return future_only, "" |
|
|
|
def create_forecast_plot(forecast_df): |
|
if forecast_df.empty: |
|
return go.Figure() |
|
|
|
fig = go.Figure() |
|
fig.add_trace(go.Scatter( |
|
x=forecast_df["ds"], |
|
y=forecast_df["yhat"], |
|
mode="lines", |
|
name="Forecast", |
|
line=dict(color="blue", width=2) |
|
)) |
|
|
|
fig.add_trace(go.Scatter( |
|
x=forecast_df["ds"], |
|
y=forecast_df["yhat_lower"], |
|
fill=None, |
|
mode="lines", |
|
line=dict(width=0), |
|
showlegend=True, |
|
name="Lower Bound" |
|
)) |
|
|
|
fig.add_trace(go.Scatter( |
|
x=forecast_df["ds"], |
|
y=forecast_df["yhat_upper"], |
|
fill="tonexty", |
|
mode="lines", |
|
line=dict(width=0), |
|
name="Upper Bound" |
|
)) |
|
|
|
fig.update_layout( |
|
title="Price Forecast", |
|
xaxis_title="Time", |
|
yaxis_title="Price", |
|
hovermode="x unified", |
|
template="plotly_white", |
|
) |
|
return fig |
|
|
|
|
|
model = RandomForestClassifier(**RANDOM_FOREST_PARAMS) |
|
|
|
def train_model(df): |
|
if df.empty: |
|
return |
|
df["target"] = (df["close"].pct_change() > 0.05).astype(int) |
|
features = df[["close", "volume"]].dropna() |
|
target = df["target"].dropna() |
|
if not features.empty and not target.empty: |
|
model.fit(features, target) |
|
else: |
|
print("Not enough data for model training.") |
|
|
|
def predict_growth(latest_data): |
|
if not hasattr(model, 'estimators_') or len(model.estimators_) == 0: |
|
return [0] |
|
|
|
try: |
|
prediction = model.predict(latest_data.reshape(1, -1)) |
|
return prediction |
|
except Exception as e: |
|
print(f"Prediction error: {e}") |
|
return [0] |
|
|
|
|
|
def analyze_market(market_type, symbol, interval, forecast_steps, daily_seasonality, weekly_seasonality, yearly_seasonality, seasonality_mode, changepoint_prior_scale, sentiment_keyword=""): |
|
df = pd.DataFrame() |
|
error_message = "" |
|
sentiment_score = 0 |
|
|
|
try: |
|
if market_type == "Crypto": |
|
df = fetch_crypto_data(symbol, interval=interval) |
|
elif market_type == "Stock": |
|
df = fetch_stock_data(symbol, interval=interval) |
|
else: |
|
error_message = "Invalid market type selected." |
|
return None, None, None, None, None, "", error_message, 0 |
|
|
|
if sentiment_keyword: |
|
sentiment_score = fetch_sentiment_data(sentiment_keyword) |
|
except Exception as e: |
|
error_message = f"Data Fetching Error: {e}" |
|
return None, None, None, None, None, "", error_message, 0 |
|
|
|
if df.empty: |
|
error_message = "No data fetched." |
|
return None, None, None, None, None, "", error_message, 0 |
|
|
|
df["timestamp"] = pd.to_datetime(df["timestamp"]) |
|
numeric_cols = ["open", "high", "low", "close", "volume"] |
|
df[numeric_cols] = df[numeric_cols].astype(float) |
|
df = calculate_technical_indicators(df) |
|
|
|
df_prophet = prepare_data_for_prophet(df) |
|
freq = "h" if interval == "1h" or interval == "60min" else "d" |
|
forecast_df, prophet_error = prophet_wrapper( |
|
df_prophet, |
|
forecast_steps, |
|
freq, |
|
daily_seasonality, |
|
weekly_seasonality, |
|
yearly_seasonality, |
|
seasonality_mode, |
|
changepoint_prior_scale, |
|
) |
|
|
|
if prophet_error: |
|
error_message = f"Prophet Error: {prophet_error}" |
|
return None, None, None, None, None, "", error_message, sentiment_score |
|
|
|
forecast_plot = create_forecast_plot(forecast_df) |
|
tech_plot, rsi_plot, macd_plot = create_technical_charts(df) |
|
|
|
try: |
|
train_model(df.copy()) |
|
if not df.empty: |
|
latest_data = df[["close", "volume"]].iloc[-1].values |
|
growth_prediction = predict_growth(latest_data) |
|
growth_label = "Yes" if growth_prediction[0] == 1 else "No" |
|
else: |
|
growth_label = "N/A: Insufficient Data" |
|
except Exception as e: |
|
error_message = f"Model Error: {e}" |
|
growth_label = "N/A" |
|
|
|
forecast_df_display = forecast_df.loc[:, ["ds", "yhat", "yhat_lower", "yhat_upper"]].copy() |
|
forecast_df_display.rename(columns={"ds": "Date", "yhat": "Forecast", "yhat_lower": "Lower Bound", "yhat_upper": "Upper Bound"}, inplace=True) |
|
return forecast_plot, tech_plot, rsi_plot, macd_plot, forecast_df_display, growth_label, error_message, sentiment_score |
|
|
|
def chatbot_response(message, history): |
|
market_type = "Crypto" |
|
symbol = "BTC-USD" |
|
interval = "1h" |
|
forecast_steps = DEFAULT_FORECAST_STEPS |
|
daily_seasonality = DEFAULT_DAILY_SEASONALITY |
|
weekly_seasonality = DEFAULT_WEEKLY_SEASONALITY |
|
yearly_seasonality = DEFAULT_YEARLY_SEASONALITY |
|
seasonality_mode = DEFAULT_SEASONALITY_MODE |
|
changepoint_prior_scale = DEFAULT_CHANGEPOINT_PRIOR_SCALE |
|
sentiment_keyword = "" |
|
|
|
|
|
message_lower = message.lower() |
|
if "stock" in message_lower: |
|
market_type = "Stock" |
|
symbol = "AAPL" |
|
elif "crypto" in message_lower: |
|
market_type = "Crypto" |
|
symbol = "BTC-USD" |
|
|
|
for crypto_sym in CRYPTO_SYMBOLS: |
|
if crypto_sym.lower() in message_lower: |
|
symbol = crypto_sym |
|
market_type = "Crypto" |
|
break |
|
for stock_sym in STOCK_SYMBOLS: |
|
if stock_sym.lower() in message_lower: |
|
symbol = stock_sym |
|
market_type = "Stock" |
|
break |
|
|
|
for intv in INTERVAL_OPTIONS: |
|
if intv in message_lower: |
|
interval = intv |
|
break |
|
|
|
forecast_steps_match = re.search(r'forecast\s*(\d+)\s*steps', message_lower) |
|
if forecast_steps_match: |
|
forecast_steps = int(forecast_steps_match.group(1)) |
|
|
|
sentiment_match = re.search(r'sentiment\s*(.+)', message_lower) |
|
if sentiment_match: |
|
sentiment_keyword = sentiment_match.group(1).strip() |
|
|
|
plots, tech_plot, rsi_plot, macd_plot, forecast_df, growth_label, error_message, sentiment_score = analyze_market( |
|
market_type, symbol, interval, forecast_steps, daily_seasonality, weekly_seasonality, yearly_seasonality, seasonality_mode, changepoint_prior_scale, sentiment_keyword |
|
) |
|
|
|
response = "" |
|
if error_message: |
|
response += f"Error: {error_message}\n\n" |
|
|
|
if plots and not error_message: |
|
response += "Here is the price forecast plot.\n\n" |
|
else: |
|
response += "Could not generate forecast plot.\n\n" |
|
|
|
if tech_plot and rsi_plot and macd_plot and not error_message: |
|
response += "Technical analysis plots (Bollinger Bands, RSI, MACD) are generated.\n\n" |
|
else: |
|
response += "Could not generate technical analysis plots.\n\n" |
|
|
|
if not error_message: |
|
response += f"Explosive Growth Prediction: {growth_label}\n" |
|
response += f"Sentiment Score (for keyword '{sentiment_keyword}'): {sentiment_score:.2f}\n" |
|
|
|
if not forecast_df.empty: |
|
|
|
forecast_summary = forecast_df.tail().to_string() |
|
response += "\nForecast Data Summary (last few points):\n" + forecast_summary + "\n" |
|
else: |
|
response += "\nNo forecast data available.\n" |
|
|
|
return response |
|
|
|
with gr.ChatInterface( |
|
chatbot_response, |
|
title="Market Analysis Chatbot", |
|
description="Ask me about crypto or stock market analysis. For example, try: 'Analyze crypto BTC-USD 1d forecast 30 steps sentiment Bitcoin' or 'Stock AAPL 1h analysis'.", |
|
examples=[ |
|
"Analyze crypto ETH-USD 1h", |
|
"Stock MSFT 1d forecast 10 steps", |
|
"Crypto LTC-USD 1wk sentiment Litecoin", |
|
"Analyze stock GOOGL", |
|
"What about crypto XRP-USD?", |
|
], |
|
theme=gr.themes.Base() |
|
) as demo: |
|
demo.launch() |