File size: 13,140 Bytes
760a820
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c63df78
760a820
 
 
 
 
 
 
 
 
c63df78
 
 
 
 
 
 
 
 
 
760a820
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c63df78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
import gradio as gr
import pandas as pd
import requests
from prophet import Prophet
import plotly.graph_objs as go
import math
import numpy as np

# Constants for API endpoints
OKX_TICKERS_ENDPOINT = "https://www.okx.com/api/v5/market/tickers?instType=SPOT"
OKX_CANDLE_ENDPOINT = "https://www.okx.com/api/v5/market/candles"

TIMEFRAME_MAPPING = {
    "1m": "1m",
    "5m": "5m",
    "15m": "15m",
    "30m": "30m",
    "1h": "1H",
    "2h": "2H",
    "4h": "4H",
    "6h": "6H",
    "12h": "12H",
    "1d": "1D",
    "1w": "1W",
}

# Function to calculate technical indicators
def calculate_technical_indicators(df):
    # RSI Calculation
    delta = df['close'].diff()
    gain = (delta.where(delta > 0, 0)).rolling(window=14).mean()
    loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean()
    rs = gain / loss
    df['RSI'] = 100 - (100 / (1 + rs))
    
    # MACD Calculation
    exp1 = df['close'].ewm(span=12, adjust=False).mean()
    exp2 = df['close'].ewm(span=26, adjust=False).mean()
    df['MACD'] = exp1 - exp2
    df['Signal_Line'] = df['MACD'].ewm(span=9, adjust=False).mean()
    
    # Bollinger Bands Calculation
    df['MA20'] = df['close'].rolling(window=20).mean()
    df['BB_upper'] = df['MA20'] + 2 * df['close'].rolling(window=20).std()
    df['BB_lower'] = df['MA20'] - 2 * df['close'].rolling(window=20).std()
    
    return df

# Function to create technical analysis charts
def create_technical_charts(df):
    # Price and Bollinger Bands Chart
    fig1 = go.Figure()
    fig1.add_trace(go.Candlestick(
        x=df['timestamp'],
        open=df['open'],
        high=df['high'],
        low=df['low'],
        close=df['close'],
        name='Price'
    ))
    fig1.add_trace(go.Scatter(x=df['timestamp'], y=df['BB_upper'], name='Upper BB', line=dict(color='gray', dash='dash')))
    fig1.add_trace(go.Scatter(x=df['timestamp'], y=df['BB_lower'], name='Lower BB', line=dict(color='gray', dash='dash')))
    fig1.update_layout(title='Price and Bollinger Bands', xaxis_title='Date', yaxis_title='Price')

    # RSI Chart
    fig2 = go.Figure()
    fig2.add_trace(go.Scatter(x=df['timestamp'], y=df['RSI'], name='RSI'))
    fig2.add_hline(y=70, line_dash="dash", line_color="red")
    fig2.add_hline(y=30, line_dash="dash", line_color="green")
    fig2.update_layout(title='RSI Indicator', xaxis_title='Date', yaxis_title='RSI')

    # MACD Chart
    fig3 = go.Figure()
    fig3.add_trace(go.Scatter(x=df['timestamp'], y=df['MACD'], name='MACD'))
    fig3.add_trace(go.Scatter(x=df['timestamp'], y=df['Signal_Line'], name='Signal Line'))
    fig3.update_layout(title='MACD', xaxis_title='Date', yaxis_title='Value')

    return fig1, fig2, fig3

# Fetch available symbols from OKX API
def fetch_okx_symbols():
    try:
        resp = requests.get(OKX_TICKERS_ENDPOINT)
        data = resp.json().get("data", [])
        symbols = [item["instId"] for item in data if item.get("instType") == "SPOT"]
        return ["BTC-USDT"] + symbols if symbols else ["BTC-USDT"]
    except Exception as e:
        print(f"Error fetching symbols: {e}")
        return ["BTC-USDT"]

# Fetch historical candle data from OKX API
def fetch_okx_candles(symbol, timeframe="1H", total=2000):
    calls_needed = math.ceil(total / 300)
    all_data = []
    
    for _ in range(calls_needed):
        params = {"instId": symbol, "bar": timeframe, "limit": 300}
        try:
            resp = requests.get(OKX_CANDLE_ENDPOINT, params=params)
            resp.raise_for_status() # Raise HTTPError for bad responses (4xx or 5xx)
            data = resp.json().get("data", [])
        except requests.exceptions.RequestException as e:
            print(f"Error fetching candles: {e}")
            return pd.DataFrame()
        except (ValueError, KeyError) as e:
            print(f"Error parsing candle data: {e}")
            return pd.DataFrame()
        
        if not data:
            break
        
        columns = ["ts", "o", "h", "l", "c"]
        df_chunk = pd.DataFrame(data, columns=columns)
        df_chunk.rename(columns={"ts": "timestamp", "o": "open", 
                                  "h": "high", "l": "low", 
                                  "c": "close"}, inplace=True)
        all_data.append(df_chunk)

        if len(data) < 300:
            break
    
    if not all_data:
        return pd.DataFrame()

    df_all = pd.concat(all_data)
    
    # Convert timestamps to datetime and calculate indicators
    df_all["timestamp"] = pd.to_datetime(df_all["timestamp"], unit="ms")
    numeric_cols = ["open", "high", "low", "close"]
    df_all[numeric_cols] = df_all[numeric_cols].astype(float)
    df_all = calculate_technical_indicators(df_all)
    
    return df_all

# Prepare data for Prophet forecasting
def prepare_data_for_prophet(df):
    if df.empty:
        return pd.DataFrame(columns=["ds", "y"])
    df_prophet = df.rename(columns={"timestamp": "ds", "close": "y"})
    return df_prophet[["ds", "y"]]

# Perform forecasting using Prophet
def prophet_forecast(df_prophet, periods=10, freq="h", daily_seasonality=False, weekly_seasonality=False, yearly_seasonality=False, seasonality_mode="additive", changepoint_prior_scale=0.05):
    if df_prophet.empty:
        return pd.DataFrame(), "No data for Prophet."
    
    try:
        model = Prophet(
            daily_seasonality=daily_seasonality,
            weekly_seasonality=weekly_seasonality,
            yearly_seasonality=yearly_seasonality,
            seasonality_mode=seasonality_mode,
            changepoint_prior_scale=changepoint_prior_scale,
        )
        model.fit(df_prophet)
        future = model.make_future_dataframe(periods=periods, freq=freq)
        forecast = model.predict(future)
        return forecast, ""
    except Exception as e:
        return pd.DataFrame(), f"Forecast error: {e}"

# Wrapper function for forecasting
def prophet_wrapper(df_prophet, forecast_steps, freq, daily_seasonality, weekly_seasonality, yearly_seasonality, seasonality_mode, changepoint_prior_scale):
    if len(df_prophet) < 10:
        return pd.DataFrame(), "Not enough data for forecasting (need >=10 rows)."

    full_forecast, err = prophet_forecast(
        df_prophet,
        periods=forecast_steps,
        freq=freq,
        daily_seasonality=daily_seasonality,
        weekly_seasonality=weekly_seasonality,
        yearly_seasonality=yearly_seasonality,
        seasonality_mode=seasonality_mode,
        changepoint_prior_scale=changepoint_prior_scale,
    )
    if err:
        return pd.DataFrame(), err

    future_only = full_forecast.loc[len(df_prophet):, ["ds", "yhat", "yhat_lower", "yhat_upper"]]
    return future_only, ""

# Create forecast plot
def create_forecast_plot(forecast_df):
    if forecast_df.empty:
        return go.Figure()

    fig = go.Figure()
    fig.add_trace(go.Scatter(
        x=forecast_df["ds"],
        y=forecast_df["yhat"],
        mode="lines",
        name="Forecast",
        line=dict(color="blue", width=2)
    ))

    fig.add_trace(go.Scatter(
        x=forecast_df["ds"],
        y=forecast_df["yhat_lower"],
        fill=None,
        mode="lines",
        line=dict(width=0),
        showlegend=True,
        name="Lower Bound"
    ))

    fig.add_trace(go.Scatter(
        x=forecast_df["ds"],
        y=forecast_df["yhat_upper"],
        fill="tonexty",
        mode="lines",
        line=dict(width=0),
        name="Upper Bound"
    ))

    fig.update_layout(
        title="Price Forecast",
        xaxis_title="Time",
        yaxis_title="Price",
        hovermode="x unified",
        template="plotly_white",
    )
    return fig

# Function to display forecast and technical analysis charts
def display_forecast(symbol, timeframe, forecast_steps, total_candles, daily_seasonality, weekly_seasonality, yearly_seasonality, seasonality_mode, changepoint_prior_scale):
    df_raw, forecast_df, error = predict(
        symbol=symbol,
        timeframe=timeframe,
        forecast_steps=forecast_steps,
        total_candles=total_candles,
        daily_seasonality=daily_seasonality,
        weekly_seasonality=weekly_seasonality,
        yearly_seasonality=yearly_seasonality,
        seasonality_mode=seasonality_mode,
        changepoint_prior_scale=changepoint_prior_scale
    )

    if error:
        return None, None, None, None, pd.DataFrame() # Return empty dataframe for forecast_df

    forecast_plot = create_forecast_plot(forecast_df)
    tech_plot, rsi_plot, macd_plot = create_technical_charts(df_raw)
    
    # Prepare forecast data for the Dataframe output
    forecast_df_display = forecast_df.loc[:, ["ds", "yhat", "yhat_lower", "yhat_upper"]].copy()
    forecast_df_display.rename(columns={"ds": "Date", "yhat": "Forecast", "yhat_lower": "Lower Bound", "yhat_upper": "Upper Bound"}, inplace=True)

    return forecast_plot, tech_plot, rsi_plot, macd_plot, forecast_df_display

# Main prediction function
def predict(symbol, timeframe, forecast_steps, total_candles, daily_seasonality, weekly_seasonality, yearly_seasonality, seasonality_mode, changepoint_prior_scale):
    okx_bar = TIMEFRAME_MAPPING.get(timeframe, "1H")
    df_raw = fetch_okx_candles(symbol=symbol, timeframe=okx_bar, total=total_candles)

    if df_raw.empty:
        return pd.DataFrame(), pd.DataFrame(), "No data fetched."

    df_prophet = prepare_data_for_prophet(df_raw)
    freq = "h" if "h" in timeframe.lower() else "d"

    future_df, err2 = prophet_wrapper(
        df_prophet,
        forecast_steps,
        freq,
        daily_seasonality,
        weekly_seasonality,
        yearly_seasonality,
        seasonality_mode,
        changepoint_prior_scale,
    )
    
    if err2:
        return pd.DataFrame(), pd.DataFrame(), err2

    return df_raw, future_df, ""


# Main Gradio app setup
def main():
    symbols = fetch_okx_symbols()
    
    with gr.Blocks(theme=gr.themes.Base()) as demo:
        # Header
        with gr.Row():
            gr.Markdown("# CryptoVision")

        # Market Selection and Forecast Parameters
        with gr.Row():
            with gr.Column(scale=1):
                gr.Markdown("### Market Selection")
                symbol_dd = gr.Dropdown(
                    label="Trading Pair",
                    choices=symbols,
                    value="BTC-USDT"
                )
                timeframe_dd = gr.Dropdown(
                    label="Timeframe",
                    choices=list(TIMEFRAME_MAPPING.keys()),
                    value="1h"
                )
            with gr.Column(scale=1):
                gr.Markdown("### Forecast Parameters")
                forecast_steps_slider = gr.Slider(
                    label="Forecast Steps",
                    minimum=1,
                    maximum=100,
                    value=24,
                    step=1
                )
                total_candles_slider = gr.Slider(
                    label="Historical Candles",
                    minimum=300,
                    maximum=3000,
                    value=2000,
                    step=100
                )

        # Advanced Settings
        with gr.Row():
            with gr.Column():
                gr.Markdown("### Advanced Settings")
                daily_box = gr.Checkbox(label="Daily Seasonality", value=True)
                weekly_box = gr.Checkbox(label="Weekly Seasonality", value=True)
                yearly_box = gr.Checkbox(label="Yearly Seasonality", value=False)
                seasonality_mode_dd = gr.Dropdown(
                    label="Seasonality Mode",
                    choices=["additive", "multiplicative"],
                    value="additive"
                )
                changepoint_scale_slider = gr.Slider(
                    label="Changepoint Prior Scale",
                    minimum=0.01,
                    maximum=1.0,
                    step=0.01,
                    value=0.05
                )

        # Generate Forecast Button
        forecast_btn = gr.Button("Generate Forecast", variant="primary", size="lg")

        # Output Plots
        with gr.Row():
            forecast_plot = gr.Plot(label="Price Forecast")
        
        with gr.Row():
            tech_plot = gr.Plot(label="Technical Analysis")
            rsi_plot = gr.Plot(label="RSI Indicator")
        
        with gr.Row():
            macd_plot = gr.Plot(label="MACD")
        
        # Output Data Table
        forecast_df = gr.Dataframe(
            label="Forecast Data",
            headers=["Date", "Forecast", "Lower Bound", "Upper Bound"]
        )

        # Button click functionality
        forecast_btn.click(
            fn=display_forecast,
            inputs=[
                symbol_dd,
                timeframe_dd,
                forecast_steps_slider,
                total_candles_slider,
                daily_box,
                weekly_box,
                yearly_box,
                seasonality_mode_dd,
                changepoint_scale_slider,
            ],
            outputs=[forecast_plot, tech_plot, rsi_plot, macd_plot, forecast_df]
        )

    return demo

if __name__ == "__main__":
    app = main()
    app.launch()