Spaces:
Runtime error
Runtime error
File size: 13,140 Bytes
760a820 c63df78 760a820 c63df78 760a820 c63df78 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 |
import gradio as gr
import pandas as pd
import requests
from prophet import Prophet
import plotly.graph_objs as go
import math
import numpy as np
# Constants for API endpoints
OKX_TICKERS_ENDPOINT = "https://www.okx.com/api/v5/market/tickers?instType=SPOT"
OKX_CANDLE_ENDPOINT = "https://www.okx.com/api/v5/market/candles"
TIMEFRAME_MAPPING = {
"1m": "1m",
"5m": "5m",
"15m": "15m",
"30m": "30m",
"1h": "1H",
"2h": "2H",
"4h": "4H",
"6h": "6H",
"12h": "12H",
"1d": "1D",
"1w": "1W",
}
# Function to calculate technical indicators
def calculate_technical_indicators(df):
# RSI Calculation
delta = df['close'].diff()
gain = (delta.where(delta > 0, 0)).rolling(window=14).mean()
loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean()
rs = gain / loss
df['RSI'] = 100 - (100 / (1 + rs))
# MACD Calculation
exp1 = df['close'].ewm(span=12, adjust=False).mean()
exp2 = df['close'].ewm(span=26, adjust=False).mean()
df['MACD'] = exp1 - exp2
df['Signal_Line'] = df['MACD'].ewm(span=9, adjust=False).mean()
# Bollinger Bands Calculation
df['MA20'] = df['close'].rolling(window=20).mean()
df['BB_upper'] = df['MA20'] + 2 * df['close'].rolling(window=20).std()
df['BB_lower'] = df['MA20'] - 2 * df['close'].rolling(window=20).std()
return df
# Function to create technical analysis charts
def create_technical_charts(df):
# Price and Bollinger Bands Chart
fig1 = go.Figure()
fig1.add_trace(go.Candlestick(
x=df['timestamp'],
open=df['open'],
high=df['high'],
low=df['low'],
close=df['close'],
name='Price'
))
fig1.add_trace(go.Scatter(x=df['timestamp'], y=df['BB_upper'], name='Upper BB', line=dict(color='gray', dash='dash')))
fig1.add_trace(go.Scatter(x=df['timestamp'], y=df['BB_lower'], name='Lower BB', line=dict(color='gray', dash='dash')))
fig1.update_layout(title='Price and Bollinger Bands', xaxis_title='Date', yaxis_title='Price')
# RSI Chart
fig2 = go.Figure()
fig2.add_trace(go.Scatter(x=df['timestamp'], y=df['RSI'], name='RSI'))
fig2.add_hline(y=70, line_dash="dash", line_color="red")
fig2.add_hline(y=30, line_dash="dash", line_color="green")
fig2.update_layout(title='RSI Indicator', xaxis_title='Date', yaxis_title='RSI')
# MACD Chart
fig3 = go.Figure()
fig3.add_trace(go.Scatter(x=df['timestamp'], y=df['MACD'], name='MACD'))
fig3.add_trace(go.Scatter(x=df['timestamp'], y=df['Signal_Line'], name='Signal Line'))
fig3.update_layout(title='MACD', xaxis_title='Date', yaxis_title='Value')
return fig1, fig2, fig3
# Fetch available symbols from OKX API
def fetch_okx_symbols():
try:
resp = requests.get(OKX_TICKERS_ENDPOINT)
data = resp.json().get("data", [])
symbols = [item["instId"] for item in data if item.get("instType") == "SPOT"]
return ["BTC-USDT"] + symbols if symbols else ["BTC-USDT"]
except Exception as e:
print(f"Error fetching symbols: {e}")
return ["BTC-USDT"]
# Fetch historical candle data from OKX API
def fetch_okx_candles(symbol, timeframe="1H", total=2000):
calls_needed = math.ceil(total / 300)
all_data = []
for _ in range(calls_needed):
params = {"instId": symbol, "bar": timeframe, "limit": 300}
try:
resp = requests.get(OKX_CANDLE_ENDPOINT, params=params)
resp.raise_for_status() # Raise HTTPError for bad responses (4xx or 5xx)
data = resp.json().get("data", [])
except requests.exceptions.RequestException as e:
print(f"Error fetching candles: {e}")
return pd.DataFrame()
except (ValueError, KeyError) as e:
print(f"Error parsing candle data: {e}")
return pd.DataFrame()
if not data:
break
columns = ["ts", "o", "h", "l", "c"]
df_chunk = pd.DataFrame(data, columns=columns)
df_chunk.rename(columns={"ts": "timestamp", "o": "open",
"h": "high", "l": "low",
"c": "close"}, inplace=True)
all_data.append(df_chunk)
if len(data) < 300:
break
if not all_data:
return pd.DataFrame()
df_all = pd.concat(all_data)
# Convert timestamps to datetime and calculate indicators
df_all["timestamp"] = pd.to_datetime(df_all["timestamp"], unit="ms")
numeric_cols = ["open", "high", "low", "close"]
df_all[numeric_cols] = df_all[numeric_cols].astype(float)
df_all = calculate_technical_indicators(df_all)
return df_all
# Prepare data for Prophet forecasting
def prepare_data_for_prophet(df):
if df.empty:
return pd.DataFrame(columns=["ds", "y"])
df_prophet = df.rename(columns={"timestamp": "ds", "close": "y"})
return df_prophet[["ds", "y"]]
# Perform forecasting using Prophet
def prophet_forecast(df_prophet, periods=10, freq="h", daily_seasonality=False, weekly_seasonality=False, yearly_seasonality=False, seasonality_mode="additive", changepoint_prior_scale=0.05):
if df_prophet.empty:
return pd.DataFrame(), "No data for Prophet."
try:
model = Prophet(
daily_seasonality=daily_seasonality,
weekly_seasonality=weekly_seasonality,
yearly_seasonality=yearly_seasonality,
seasonality_mode=seasonality_mode,
changepoint_prior_scale=changepoint_prior_scale,
)
model.fit(df_prophet)
future = model.make_future_dataframe(periods=periods, freq=freq)
forecast = model.predict(future)
return forecast, ""
except Exception as e:
return pd.DataFrame(), f"Forecast error: {e}"
# Wrapper function for forecasting
def prophet_wrapper(df_prophet, forecast_steps, freq, daily_seasonality, weekly_seasonality, yearly_seasonality, seasonality_mode, changepoint_prior_scale):
if len(df_prophet) < 10:
return pd.DataFrame(), "Not enough data for forecasting (need >=10 rows)."
full_forecast, err = prophet_forecast(
df_prophet,
periods=forecast_steps,
freq=freq,
daily_seasonality=daily_seasonality,
weekly_seasonality=weekly_seasonality,
yearly_seasonality=yearly_seasonality,
seasonality_mode=seasonality_mode,
changepoint_prior_scale=changepoint_prior_scale,
)
if err:
return pd.DataFrame(), err
future_only = full_forecast.loc[len(df_prophet):, ["ds", "yhat", "yhat_lower", "yhat_upper"]]
return future_only, ""
# Create forecast plot
def create_forecast_plot(forecast_df):
if forecast_df.empty:
return go.Figure()
fig = go.Figure()
fig.add_trace(go.Scatter(
x=forecast_df["ds"],
y=forecast_df["yhat"],
mode="lines",
name="Forecast",
line=dict(color="blue", width=2)
))
fig.add_trace(go.Scatter(
x=forecast_df["ds"],
y=forecast_df["yhat_lower"],
fill=None,
mode="lines",
line=dict(width=0),
showlegend=True,
name="Lower Bound"
))
fig.add_trace(go.Scatter(
x=forecast_df["ds"],
y=forecast_df["yhat_upper"],
fill="tonexty",
mode="lines",
line=dict(width=0),
name="Upper Bound"
))
fig.update_layout(
title="Price Forecast",
xaxis_title="Time",
yaxis_title="Price",
hovermode="x unified",
template="plotly_white",
)
return fig
# Function to display forecast and technical analysis charts
def display_forecast(symbol, timeframe, forecast_steps, total_candles, daily_seasonality, weekly_seasonality, yearly_seasonality, seasonality_mode, changepoint_prior_scale):
df_raw, forecast_df, error = predict(
symbol=symbol,
timeframe=timeframe,
forecast_steps=forecast_steps,
total_candles=total_candles,
daily_seasonality=daily_seasonality,
weekly_seasonality=weekly_seasonality,
yearly_seasonality=yearly_seasonality,
seasonality_mode=seasonality_mode,
changepoint_prior_scale=changepoint_prior_scale
)
if error:
return None, None, None, None, pd.DataFrame() # Return empty dataframe for forecast_df
forecast_plot = create_forecast_plot(forecast_df)
tech_plot, rsi_plot, macd_plot = create_technical_charts(df_raw)
# Prepare forecast data for the Dataframe output
forecast_df_display = forecast_df.loc[:, ["ds", "yhat", "yhat_lower", "yhat_upper"]].copy()
forecast_df_display.rename(columns={"ds": "Date", "yhat": "Forecast", "yhat_lower": "Lower Bound", "yhat_upper": "Upper Bound"}, inplace=True)
return forecast_plot, tech_plot, rsi_plot, macd_plot, forecast_df_display
# Main prediction function
def predict(symbol, timeframe, forecast_steps, total_candles, daily_seasonality, weekly_seasonality, yearly_seasonality, seasonality_mode, changepoint_prior_scale):
okx_bar = TIMEFRAME_MAPPING.get(timeframe, "1H")
df_raw = fetch_okx_candles(symbol=symbol, timeframe=okx_bar, total=total_candles)
if df_raw.empty:
return pd.DataFrame(), pd.DataFrame(), "No data fetched."
df_prophet = prepare_data_for_prophet(df_raw)
freq = "h" if "h" in timeframe.lower() else "d"
future_df, err2 = prophet_wrapper(
df_prophet,
forecast_steps,
freq,
daily_seasonality,
weekly_seasonality,
yearly_seasonality,
seasonality_mode,
changepoint_prior_scale,
)
if err2:
return pd.DataFrame(), pd.DataFrame(), err2
return df_raw, future_df, ""
# Main Gradio app setup
def main():
symbols = fetch_okx_symbols()
with gr.Blocks(theme=gr.themes.Base()) as demo:
# Header
with gr.Row():
gr.Markdown("# CryptoVision")
# Market Selection and Forecast Parameters
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Market Selection")
symbol_dd = gr.Dropdown(
label="Trading Pair",
choices=symbols,
value="BTC-USDT"
)
timeframe_dd = gr.Dropdown(
label="Timeframe",
choices=list(TIMEFRAME_MAPPING.keys()),
value="1h"
)
with gr.Column(scale=1):
gr.Markdown("### Forecast Parameters")
forecast_steps_slider = gr.Slider(
label="Forecast Steps",
minimum=1,
maximum=100,
value=24,
step=1
)
total_candles_slider = gr.Slider(
label="Historical Candles",
minimum=300,
maximum=3000,
value=2000,
step=100
)
# Advanced Settings
with gr.Row():
with gr.Column():
gr.Markdown("### Advanced Settings")
daily_box = gr.Checkbox(label="Daily Seasonality", value=True)
weekly_box = gr.Checkbox(label="Weekly Seasonality", value=True)
yearly_box = gr.Checkbox(label="Yearly Seasonality", value=False)
seasonality_mode_dd = gr.Dropdown(
label="Seasonality Mode",
choices=["additive", "multiplicative"],
value="additive"
)
changepoint_scale_slider = gr.Slider(
label="Changepoint Prior Scale",
minimum=0.01,
maximum=1.0,
step=0.01,
value=0.05
)
# Generate Forecast Button
forecast_btn = gr.Button("Generate Forecast", variant="primary", size="lg")
# Output Plots
with gr.Row():
forecast_plot = gr.Plot(label="Price Forecast")
with gr.Row():
tech_plot = gr.Plot(label="Technical Analysis")
rsi_plot = gr.Plot(label="RSI Indicator")
with gr.Row():
macd_plot = gr.Plot(label="MACD")
# Output Data Table
forecast_df = gr.Dataframe(
label="Forecast Data",
headers=["Date", "Forecast", "Lower Bound", "Upper Bound"]
)
# Button click functionality
forecast_btn.click(
fn=display_forecast,
inputs=[
symbol_dd,
timeframe_dd,
forecast_steps_slider,
total_candles_slider,
daily_box,
weekly_box,
yearly_box,
seasonality_mode_dd,
changepoint_scale_slider,
],
outputs=[forecast_plot, tech_plot, rsi_plot, macd_plot, forecast_df]
)
return demo
if __name__ == "__main__":
app = main()
app.launch() |