Spaces:
Runtime error
Runtime error
import gradio as gr | |
import pandas as pd | |
import requests | |
from prophet import Prophet | |
import plotly.graph_objs as go | |
import math | |
import numpy as np | |
# Constants for API endpoints | |
OKX_TICKERS_ENDPOINT = "https://www.okx.com/api/v5/market/tickers?instType=SPOT" | |
OKX_CANDLE_ENDPOINT = "https://www.okx.com/api/v5/market/candles" | |
TIMEFRAME_MAPPING = { | |
"1m": "1m", | |
"5m": "5m", | |
"15m": "15m", | |
"30m": "30m", | |
"1h": "1H", | |
"2h": "2H", | |
"4h": "4H", | |
"6h": "6H", | |
"12h": "12H", | |
"1d": "1D", | |
"1w": "1W", | |
} | |
# Function to calculate technical indicators | |
def calculate_technical_indicators(df): | |
# RSI Calculation | |
delta = df['close'].diff() | |
gain = (delta.where(delta > 0, 0)).rolling(window=14).mean() | |
loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean() | |
rs = gain / loss | |
df['RSI'] = 100 - (100 / (1 + rs)) | |
# MACD Calculation | |
exp1 = df['close'].ewm(span=12, adjust=False).mean() | |
exp2 = df['close'].ewm(span=26, adjust=False).mean() | |
df['MACD'] = exp1 - exp2 | |
df['Signal_Line'] = df['MACD'].ewm(span=9, adjust=False).mean() | |
# Bollinger Bands Calculation | |
df['MA20'] = df['close'].rolling(window=20).mean() | |
df['BB_upper'] = df['MA20'] + 2 * df['close'].rolling(window=20).std() | |
df['BB_lower'] = df['MA20'] - 2 * df['close'].rolling(window=20).std() | |
return df | |
# Function to create technical analysis charts | |
def create_technical_charts(df): | |
# Price and Bollinger Bands Chart | |
fig1 = go.Figure() | |
fig1.add_trace(go.Candlestick( | |
x=df['timestamp'], | |
open=df['open'], | |
high=df['high'], | |
low=df['low'], | |
close=df['close'], | |
name='Price' | |
)) | |
fig1.add_trace(go.Scatter(x=df['timestamp'], y=df['BB_upper'], name='Upper BB', line=dict(color='gray', dash='dash'))) | |
fig1.add_trace(go.Scatter(x=df['timestamp'], y=df['BB_lower'], name='Lower BB', line=dict(color='gray', dash='dash'))) | |
fig1.update_layout(title='Price and Bollinger Bands', xaxis_title='Date', yaxis_title='Price') | |
# RSI Chart | |
fig2 = go.Figure() | |
fig2.add_trace(go.Scatter(x=df['timestamp'], y=df['RSI'], name='RSI')) | |
fig2.add_hline(y=70, line_dash="dash", line_color="red") | |
fig2.add_hline(y=30, line_dash="dash", line_color="green") | |
fig2.update_layout(title='RSI Indicator', xaxis_title='Date', yaxis_title='RSI') | |
# MACD Chart | |
fig3 = go.Figure() | |
fig3.add_trace(go.Scatter(x=df['timestamp'], y=df['MACD'], name='MACD')) | |
fig3.add_trace(go.Scatter(x=df['timestamp'], y=df['Signal_Line'], name='Signal Line')) | |
fig3.update_layout(title='MACD', xaxis_title='Date', yaxis_title='Value') | |
return fig1, fig2, fig3 | |
# Fetch available symbols from OKX API | |
def fetch_okx_symbols(): | |
try: | |
resp = requests.get(OKX_TICKERS_ENDPOINT) | |
data = resp.json().get("data", []) | |
symbols = [item["instId"] for item in data if item.get("instType") == "SPOT"] | |
return ["BTC-USDT"] + symbols if symbols else ["BTC-USDT"] | |
except Exception as e: | |
return ["BTC-USDT"] | |
# Fetch historical candle data from OKX API | |
def fetch_okx_candles(symbol, timeframe="1H", total=2000): | |
calls_needed = math.ceil(total / 300) | |
all_data = [] | |
for _ in range(calls_needed): | |
params = {"instId": symbol, "bar": timeframe, "limit": 300} | |
resp = requests.get(OKX_CANDLE_ENDPOINT, params=params) | |
data = resp.json().get("data", []) | |
if not data: | |
break | |
columns = ["ts", "o", "h", "l", "c"] | |
df_chunk = pd.DataFrame(data, columns=columns) | |
df_chunk.rename(columns={"ts": "timestamp", "o": "open", | |
"h": "high", "l": "low", | |
"c": "close"}, inplace=True) | |
all_data.append(df_chunk) | |
if len(data) < 300: | |
break | |
if not all_data: | |
return pd.DataFrame() | |
df_all = pd.concat(all_data) | |
# Convert timestamps to datetime and calculate indicators | |
... | |