Spaces:
Runtime error
Runtime error
# app.py | |
import gradio as gr | |
import pandas as pd | |
import numpy as np | |
from prophet import Prophet | |
import plotly.graph_objs as go | |
import math | |
import requests | |
from sklearn.ensemble import RandomForestClassifier | |
from textblob import TextBlob | |
import yfinance as yf # Import yfinance | |
# --- Constants --- | |
CRYPTO_SYMBOLS = ["BTC-USD", "ETH-USD"] # Use standardized symbols | |
STOCK_SYMBOLS = ["AAPL", "MSFT"] | |
INTERVAL_OPTIONS = ["1h", "1d"] # 1h not available for yfinance for stocks; use 1d for stocks. | |
# --- Data Fetching Functions (Revised) --- | |
def fetch_crypto_data(symbol, interval="1h", limit=100): | |
"""Fetch crypto market data using yfinance (Yahoo Finance).""" | |
try: | |
# yfinance uses standardized symbols (e.g., BTC-USD) | |
ticker = yf.Ticker(symbol) | |
# Handle different intervals. Yahoo Finance has limitations. | |
if interval == "1h": | |
period = "1d" # yfinance doesn't support 1h for historical data, so we'll use 1d and resample. | |
df = ticker.history(period=period, interval="1h") | |
elif interval == "1d": | |
df = ticker.history(period="1y", interval=interval) # Get 1 year of data | |
else: | |
raise ValueError("Invalid interval for yfinance.") | |
if df.empty: | |
raise Exception("No data returned from yfinance.") | |
df.reset_index(inplace=True) | |
df.rename(columns={"Datetime": "timestamp", "Open": "open", "High": "high", "Low": "low", "Close": "close", "Volume": "volume"}, inplace=True) | |
df = df[["timestamp", "open", "high", "low", "close", "volume"]] # Select and order columns | |
return df.dropna() | |
except Exception as e: | |
raise Exception(f"Error fetching crypto data from yfinance: {e}") | |
def fetch_stock_data(symbol, interval="1d"): # Simplified for yfinance | |
"""Fetch stock market data using yfinance.""" | |
try: | |
ticker = yf.Ticker(symbol) | |
df = ticker.history(period="1y", interval=interval) # Get 1 year of daily data | |
if df.empty: | |
raise Exception("No data returned from yfinance.") | |
df.reset_index(inplace=True) | |
df.rename(columns={"Date": "timestamp", "Open": "open", "High": "high", "Low": "low", "Close": "close", "Volume": "volume"}, inplace=True) | |
df = df[["timestamp", "open", "high", "low", "close", "volume"]] | |
return df.dropna() | |
except Exception as e: | |
raise Exception(f"Error fetching stock data from yfinance: {e}") | |
def fetch_sentiment_data(keyword): # Placeholder - replace with a real sentiment analysis method | |
"""Analyze sentiment from social media (placeholder).""" | |
try: | |
tweets = [ | |
f"{keyword} is going to moon!", | |
f"I hate {keyword}, it's trash!", | |
f"{keyword} is amazing!" | |
] | |
sentiments = [TextBlob(tweet).sentiment.polarity for tweet in tweets] | |
return sum(sentiments) / len(sentiments) if sentiments else 0 # Avoid ZeroDivisionError | |
except Exception as e: | |
print(f"Sentiment analysis error: {e}") | |
return 0 | |
# --- Technical Analysis Functions --- | |
def calculate_technical_indicators(df): | |
"""Calculates RSI, MACD, and Bollinger Bands.""" | |
if df.empty: | |
return df | |
# RSI Calculation | |
delta = df['close'].diff() | |
gain = (delta.where(delta > 0, 0)).rolling(window=14).mean() | |
loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean() | |
rs = gain / loss | |
df['RSI'] = 100 - (100 / (1 + rs)) | |
# MACD Calculation | |
exp1 = df['close'].ewm(span=12, adjust=False).mean() | |
exp2 = df['close'].ewm(span=26, adjust=False).mean() | |
df['MACD'] = exp1 - exp2 | |
df['Signal_Line'] = df['MACD'].ewm(span=9, adjust=False).mean() | |
# Bollinger Bands Calculation | |
df['MA20'] = df['close'].rolling(window=20).mean() | |
df['BB_upper'] = df['MA20'] + 2 * df['close'].rolling(window=20).std() | |
df['BB_lower'] = df['MA20'] - 2 * df['close'].rolling(window=20).std() | |
return df | |
def create_technical_charts(df): | |
"""Creates technical analysis charts (Price, RSI, MACD).""" | |
if df.empty: | |
return None, None, None | |
fig1 = go.Figure() | |
fig1.add_trace(go.Candlestick( | |
x=df['timestamp'], | |
open=df['open'], | |
high=df['high'], | |
low=df['low'], | |
close=df['close'], | |
name='Price' | |
)) | |
fig1.add_trace(go.Scatter(x=df['timestamp'], y=df['BB_upper'], name='Upper BB', line=dict(color='gray', dash='dash'))) | |
fig1.add_trace(go.Scatter(x=df['timestamp'], y=df['BB_lower'], name='Lower BB', line=dict(color='gray', dash='dash'))) | |
fig1.update_layout(title='Price and Bollinger Bands', xaxis_title='Date', yaxis_title='Price') | |
fig2 = go.Figure() | |
fig2.add_trace(go.Scatter(x=df['timestamp'], y=df['RSI'], name='RSI')) | |
fig2.add_hline(y=70, line_dash="dash", line_color="red") | |
fig2.add_hline(y=30, line_dash="dash", line_color="green") | |
fig2.update_layout(title='RSI Indicator', xaxis_title='Date', yaxis_title='RSI') | |
fig3 = go.Figure() | |
fig3.add_trace(go.Scatter(x=df['timestamp'], y=df['MACD'], name='MACD')) | |
fig3.add_trace(go.Scatter(x=df['timestamp'], y=df['Signal_Line'], name='Signal Line')) | |
fig3.update_layout(title='MACD', xaxis_title='Date', yaxis_title='Value') | |
return fig1, fig2, fig3 | |
# --- Prophet Forecasting Functions --- | |
def prepare_data_for_prophet(df): | |
"""Prepares data for Prophet.""" | |
if df.empty: | |
return pd.DataFrame(columns=["ds", "y"]) | |
df_prophet = df.rename(columns={"timestamp": "ds", "close": "y"}) | |
return df_prophet[["ds", "y"]] | |
def prophet_forecast(df_prophet, periods=10, freq="h", daily_seasonality=False, weekly_seasonality=False, yearly_seasonality=False, seasonality_mode="additive", changepoint_prior_scale=0.05): | |
"""Performs Prophet forecasting.""" | |
if df_prophet.empty: | |
return pd.DataFrame(), "No data for Prophet." | |
try: | |
model = Prophet( | |
daily_seasonality=daily_seasonality, | |
weekly_seasonality=weekly_seasonality, | |
yearly_seasonality=yearly_seasonality, | |
seasonality_mode=seasonality_mode, | |
changepoint_prior_scale=changepoint_prior_scale, | |
) | |
model.fit(df_prophet) | |
future = model.make_future_dataframe(periods=periods, freq=freq) | |
forecast = model.predict(future) | |
return forecast, "" | |
except Exception as e: | |
return pd.DataFrame(), f"Forecast error: {e}" | |
def prophet_wrapper(df_prophet, forecast_steps, freq, daily_seasonality, weekly_seasonality, yearly_seasonality, seasonality_mode, changepoint_prior_scale): | |
"""Wrapper for Prophet forecasting.""" | |
if len(df_prophet) < 10: | |
return pd.DataFrame(), "Not enough data for forecasting (need >=10 rows)." | |
full_forecast, err = prophet_forecast( | |
df_prophet, | |
periods=forecast_steps, | |
freq=freq, | |
daily_seasonality=daily_seasonality, | |
weekly_seasonality=weekly_seasonality, | |
yearly_seasonality=yearly_seasonality, | |
seasonality_mode=seasonality_mode, | |
changepoint_prior_scale=changepoint_prior_scale, | |
) | |
if err: | |
return pd.DataFrame(), err | |
future_only = full_forecast.loc[len(df_prophet):, ["ds", "yhat", "yhat_lower", "yhat_upper"]] | |
return future_only, "" | |
def create_forecast_plot(forecast_df): | |
"""Creates the forecast plot.""" | |
if forecast_df.empty: | |
return go.Figure() | |
fig = go.Figure() | |
fig.add_trace(go.Scatter( | |
x=forecast_df["ds"], | |
y=forecast_df["yhat"], | |
mode="lines", | |
name="Forecast", | |
line=dict(color="blue", width=2) | |
)) | |
fig.add_trace(go.Scatter( | |
x=forecast_df["ds"], | |
y=forecast_df["yhat_lower"], | |
fill=None, | |
mode="lines", | |
line=dict(width=0), | |
showlegend=True, | |
name="Lower Bound" | |
)) | |
fig.add_trace(go.Scatter( | |
x=forecast_df["ds"], | |
y=forecast_df["yhat_upper"], | |
fill="tonexty", | |
mode="lines", | |
line=dict(width=0), | |
name="Upper Bound" | |
)) | |
fig.update_layout( | |
title="Price Forecast", | |
xaxis_title="Time", | |
yaxis_title="Price", | |
hovermode="x unified", | |
template="plotly_white", | |
) | |
return fig | |
# --- Model Training and Prediction --- | |
model = RandomForestClassifier() # Moved here | |
def train_model(df): | |
"""Train the AI model.""" | |
if df.empty: | |
return # Or raise an exception, or return a default model. | |
df["target"] = (df["close"].pct_change() > 0.05).astype(int) # Target: 1 if price increased by >5% | |
features = df[["close", "volume"]].dropna() | |
target = df["target"].dropna() | |
if not features.empty and not target.empty: #check data is available | |
model.fit(features, target) | |
else: | |
print("Not enough data for model training.") | |
def predict_growth(latest_data): | |
"""Predict explosive growth.""" | |
if not hasattr(model, 'estimators_') or len(model.estimators_) == 0: # Check if model is trained | |
return [0] # Or return an error message, or a default value | |
try: | |
prediction = model.predict(latest_data.reshape(1, -1)) | |
return prediction | |
except Exception as e: | |
print(f"Prediction error: {e}") | |
return [0] | |
# --- Main Prediction and Display Function --- | |
def analyze_market(market_type, symbol, interval, forecast_steps, daily_seasonality, weekly_seasonality, yearly_seasonality, seasonality_mode, changepoint_prior_scale, sentiment_keyword=""): | |
"""Main function to orchestrate data fetching, analysis, and prediction.""" | |
df = pd.DataFrame() | |
error_message = "" | |
sentiment_score = 0 # Initialize sentiment score | |
# 1. Data Fetching | |
try: | |
if market_type == "Crypto": | |
df = fetch_crypto_data(symbol, interval=interval) | |
elif market_type == "Stock": | |
df = fetch_stock_data(symbol, interval=interval) | |
else: | |
error_message = "Invalid market type selected." | |
return None, None, None, None, None, "", error_message, 0 # Also return sentiment | |
if sentiment_keyword: # If a keyword for sentiment is entered: | |
sentiment_score = fetch_sentiment_data(sentiment_keyword) | |
except Exception as e: | |
error_message = f"Data Fetching Error: {e}" | |
return None, None, None, None, None, "", error_message, 0 #Return error + sentiment | |
if df.empty: | |
error_message = "No data fetched." | |
return None, None, None, None, None, "", error_message, 0 # Return empty + sentiment | |
# 2. Preprocessing & Technical Analysis | |
df["timestamp"] = pd.to_datetime(df["timestamp"]) | |
numeric_cols = ["open", "high", "low", "close", "volume"] | |
df[numeric_cols] = df[numeric_cols].astype(float) | |
df = calculate_technical_indicators(df) | |
# 3. Prophet Forecasting | |
df_prophet = prepare_data_for_prophet(df) | |
freq = "h" if interval == "1h" or interval == "60min" else "d" #dynamic freq | |
forecast_df, prophet_error = prophet_wrapper( | |
df_prophet, | |
forecast_steps, | |
freq, | |
daily_seasonality, | |
weekly_seasonality, | |
yearly_seasonality, | |
seasonality_mode, | |
changepoint_prior_scale, | |
) | |
if prophet_error: | |
error_message = f"Prophet Error: {prophet_error}" | |
return None, None, None, None, None, "", error_message, sentiment_score #Return prophet error | |
forecast_plot = create_forecast_plot(forecast_df) | |
# 4. Create the Charts | |
tech_plot, rsi_plot, macd_plot = create_technical_charts(df) | |
# 5. Model Training and Prediction (simplified) | |
try: | |
train_model(df.copy()) # Train on a copy to avoid modifying original df. | |
if not df.empty: #Check if dataframe is empty or not. | |
latest_data = df[["close", "volume"]].iloc[-1].values # Get the last row for prediction. | |
growth_prediction = predict_growth(latest_data) | |
growth_label = "Yes" if growth_prediction[0] == 1 else "No" | |
else: | |
growth_label = "N/A: Insufficient Data" # If there is no data to predict the growth. | |
except Exception as e: | |
error_message = f"Model Error: {e}" | |
growth_label = "N/A" | |
# Prepare forecast data for the Dataframe output | |
forecast_df_display = forecast_df.loc[:, ["ds", "yhat", "yhat_lower", "yhat_upper"]].copy() | |
forecast_df_display.rename(columns={"ds": "Date", "yhat": "Forecast", "yhat_lower": "Lower Bound", "yhat_upper": "Upper Bound"}, inplace=True) | |
return forecast_plot, tech_plot, rsi_plot, macd_plot, forecast_df_display, growth_label, error_message, sentiment_score | |
# --- Gradio Interface --- | |
with gr.Blocks(theme=gr.themes.Base()) as demo: | |
gr.Markdown("# Market Analysis and Prediction") | |
with gr.Row(): | |
with gr.Column(): | |
market_type_dd = gr.Radio(label="Market Type", choices=["Crypto", "Stock"], value="Crypto") | |
symbol_dd = gr.Dropdown(label="Symbol", choices=CRYPTO_SYMBOLS, value="BTC-USD") # Use standardized symbols | |
interval_dd = gr.Dropdown(label="Interval", choices=INTERVAL_OPTIONS, value="1h") | |
forecast_steps_slider = gr.Slider(label="Forecast Steps", minimum=1, maximum=100, value=24, step=1) | |
daily_box = gr.Checkbox(label="Daily Seasonality", value=True) | |
weekly_box = gr.Checkbox(label="Weekly Seasonality", value=True) | |
yearly_box = gr.Checkbox(label="Yearly Seasonality", value=False) | |
seasonality_mode_dd = gr.Dropdown(label="Seasonality Mode", choices=["additive", "multiplicative"], value="additive") | |
changepoint_scale_slider = gr.Slider(label="Changepoint Prior Scale", minimum=0.01, maximum=1.0, step=0.01, value=0.05) | |
sentiment_keyword_txt = gr.Textbox(label="Sentiment Keyword (optional)") #Add Sentiment input | |
with gr.Column(): | |
forecast_plot = gr.Plot(label="Price Forecast") | |
with gr.Row(): | |
tech_plot = gr.Plot(label="Technical Analysis") | |
rsi_plot = gr.Plot(label="RSI Indicator") | |
with gr.Row(): | |
macd_plot = gr.Plot(label="MACD") | |
forecast_df = gr.Dataframe(label="Forecast Data", headers=["Date", "Forecast", "Lower Bound", "Upper Bound"]) | |
growth_label_output = gr.Label(label="Explosive Growth Prediction") # Added for prediction. | |
sentiment_label_output = gr.Number(label="Sentiment Score") # Added for sentiment output | |
# Event Listener to update symbol dropdown based on market type | |
def update_symbol_choices(market_type): | |
if market_type == "Crypto": | |
return gr.Dropdown(choices=CRYPTO_SYMBOLS, value="BTC-USD") | |
elif market_type == "Stock": | |
return gr.Dropdown(choices=STOCK_SYMBOLS, value="AAPL") # Default to AAPL for stock | |
return gr.Dropdown(choices=[], value=None) # Shouldn't happen, but safety check | |
market_type_dd.change(fn=update_symbol_choices, inputs=[market_type_dd], outputs=[symbol_dd]) | |
analyze_button = gr.Button("Analyze Market", variant="primary") | |
analyze_button.click( | |
fn=analyze_market, | |
inputs=[ | |
market_type_dd, | |
symbol_dd, | |
interval_dd, | |
forecast_steps_slider, | |
daily_box, | |
weekly_box, | |
yearly_box, | |
seasonality_mode_dd, | |
changepoint_scale_slider, | |
sentiment_keyword_txt, # Add sentiment keyword to the input | |
], | |
outputs=[forecast_plot, tech_plot, rsi_plot, macd_plot, forecast_df, growth_label_output, gr.Label(label="Error Message"), sentiment_label_output] # Add sentiment score to the output | |
) | |
if __name__ == "__main__": | |
demo.launch() |