Spaces:
Runtime error
Runtime error
File size: 15,697 Bytes
c63bfc4 760a820 c63bfc4 760a820 06772d8 87def00 06772d8 87def00 06772d8 87def00 06772d8 c63bfc4 06772d8 c63bfc4 06772d8 c63bfc4 06772d8 c63bfc4 06772d8 c63bfc4 06772d8 c63bfc4 06772d8 c63bfc4 87def00 760a820 87def00 760a820 87def00 760a820 87def00 760a820 87def00 760a820 87def00 760a820 87def00 c63df78 87def00 c63df78 87def00 c63df78 87def00 c63df78 87def00 c63df78 87def00 c63df78 c63bfc4 87def00 c63bfc4 87def00 c63bfc4 87def00 c63bfc4 c63df78 c63bfc4 87def00 c63bfc4 87def00 c63bfc4 87def00 c63df78 87def00 c63bfc4 87def00 c63df78 87def00 c63bfc4 87def00 06772d8 87def00 c63bfc4 87def00 c63bfc4 87def00 06772d8 87def00 c63bfc4 87def00 c63bfc4 87def00 c63df78 87def00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 |
# app.py
import gradio as gr
import pandas as pd
import numpy as np
from prophet import Prophet
import plotly.graph_objs as go
import math
import requests
from sklearn.ensemble import RandomForestClassifier
from textblob import TextBlob
import yfinance as yf # Import yfinance
# --- Constants ---
CRYPTO_SYMBOLS = ["BTC-USD", "ETH-USD"] # Use standardized symbols
STOCK_SYMBOLS = ["AAPL", "MSFT"]
INTERVAL_OPTIONS = ["1h", "1d"] # 1h not available for yfinance for stocks; use 1d for stocks.
# --- Data Fetching Functions (Revised) ---
def fetch_crypto_data(symbol, interval="1h", limit=100):
"""Fetch crypto market data using yfinance (Yahoo Finance)."""
try:
# yfinance uses standardized symbols (e.g., BTC-USD)
ticker = yf.Ticker(symbol)
# Handle different intervals. Yahoo Finance has limitations.
if interval == "1h":
period = "1d" # yfinance doesn't support 1h for historical data, so we'll use 1d and resample.
df = ticker.history(period=period, interval="1h")
elif interval == "1d":
df = ticker.history(period="1y", interval=interval) # Get 1 year of data
else:
raise ValueError("Invalid interval for yfinance.")
if df.empty:
raise Exception("No data returned from yfinance.")
df.reset_index(inplace=True)
df.rename(columns={"Datetime": "timestamp", "Open": "open", "High": "high", "Low": "low", "Close": "close", "Volume": "volume"}, inplace=True)
df = df[["timestamp", "open", "high", "low", "close", "volume"]] # Select and order columns
return df.dropna()
except Exception as e:
raise Exception(f"Error fetching crypto data from yfinance: {e}")
def fetch_stock_data(symbol, interval="1d"): # Simplified for yfinance
"""Fetch stock market data using yfinance."""
try:
ticker = yf.Ticker(symbol)
df = ticker.history(period="1y", interval=interval) # Get 1 year of daily data
if df.empty:
raise Exception("No data returned from yfinance.")
df.reset_index(inplace=True)
df.rename(columns={"Date": "timestamp", "Open": "open", "High": "high", "Low": "low", "Close": "close", "Volume": "volume"}, inplace=True)
df = df[["timestamp", "open", "high", "low", "close", "volume"]]
return df.dropna()
except Exception as e:
raise Exception(f"Error fetching stock data from yfinance: {e}")
def fetch_sentiment_data(keyword): # Placeholder - replace with a real sentiment analysis method
"""Analyze sentiment from social media (placeholder)."""
try:
tweets = [
f"{keyword} is going to moon!",
f"I hate {keyword}, it's trash!",
f"{keyword} is amazing!"
]
sentiments = [TextBlob(tweet).sentiment.polarity for tweet in tweets]
return sum(sentiments) / len(sentiments) if sentiments else 0 # Avoid ZeroDivisionError
except Exception as e:
print(f"Sentiment analysis error: {e}")
return 0
# --- Technical Analysis Functions ---
def calculate_technical_indicators(df):
"""Calculates RSI, MACD, and Bollinger Bands."""
if df.empty:
return df
# RSI Calculation
delta = df['close'].diff()
gain = (delta.where(delta > 0, 0)).rolling(window=14).mean()
loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean()
rs = gain / loss
df['RSI'] = 100 - (100 / (1 + rs))
# MACD Calculation
exp1 = df['close'].ewm(span=12, adjust=False).mean()
exp2 = df['close'].ewm(span=26, adjust=False).mean()
df['MACD'] = exp1 - exp2
df['Signal_Line'] = df['MACD'].ewm(span=9, adjust=False).mean()
# Bollinger Bands Calculation
df['MA20'] = df['close'].rolling(window=20).mean()
df['BB_upper'] = df['MA20'] + 2 * df['close'].rolling(window=20).std()
df['BB_lower'] = df['MA20'] - 2 * df['close'].rolling(window=20).std()
return df
def create_technical_charts(df):
"""Creates technical analysis charts (Price, RSI, MACD)."""
if df.empty:
return None, None, None
fig1 = go.Figure()
fig1.add_trace(go.Candlestick(
x=df['timestamp'],
open=df['open'],
high=df['high'],
low=df['low'],
close=df['close'],
name='Price'
))
fig1.add_trace(go.Scatter(x=df['timestamp'], y=df['BB_upper'], name='Upper BB', line=dict(color='gray', dash='dash')))
fig1.add_trace(go.Scatter(x=df['timestamp'], y=df['BB_lower'], name='Lower BB', line=dict(color='gray', dash='dash')))
fig1.update_layout(title='Price and Bollinger Bands', xaxis_title='Date', yaxis_title='Price')
fig2 = go.Figure()
fig2.add_trace(go.Scatter(x=df['timestamp'], y=df['RSI'], name='RSI'))
fig2.add_hline(y=70, line_dash="dash", line_color="red")
fig2.add_hline(y=30, line_dash="dash", line_color="green")
fig2.update_layout(title='RSI Indicator', xaxis_title='Date', yaxis_title='RSI')
fig3 = go.Figure()
fig3.add_trace(go.Scatter(x=df['timestamp'], y=df['MACD'], name='MACD'))
fig3.add_trace(go.Scatter(x=df['timestamp'], y=df['Signal_Line'], name='Signal Line'))
fig3.update_layout(title='MACD', xaxis_title='Date', yaxis_title='Value')
return fig1, fig2, fig3
# --- Prophet Forecasting Functions ---
def prepare_data_for_prophet(df):
"""Prepares data for Prophet."""
if df.empty:
return pd.DataFrame(columns=["ds", "y"])
df_prophet = df.rename(columns={"timestamp": "ds", "close": "y"})
return df_prophet[["ds", "y"]]
def prophet_forecast(df_prophet, periods=10, freq="h", daily_seasonality=False, weekly_seasonality=False, yearly_seasonality=False, seasonality_mode="additive", changepoint_prior_scale=0.05):
"""Performs Prophet forecasting."""
if df_prophet.empty:
return pd.DataFrame(), "No data for Prophet."
try:
model = Prophet(
daily_seasonality=daily_seasonality,
weekly_seasonality=weekly_seasonality,
yearly_seasonality=yearly_seasonality,
seasonality_mode=seasonality_mode,
changepoint_prior_scale=changepoint_prior_scale,
)
model.fit(df_prophet)
future = model.make_future_dataframe(periods=periods, freq=freq)
forecast = model.predict(future)
return forecast, ""
except Exception as e:
return pd.DataFrame(), f"Forecast error: {e}"
def prophet_wrapper(df_prophet, forecast_steps, freq, daily_seasonality, weekly_seasonality, yearly_seasonality, seasonality_mode, changepoint_prior_scale):
"""Wrapper for Prophet forecasting."""
if len(df_prophet) < 10:
return pd.DataFrame(), "Not enough data for forecasting (need >=10 rows)."
full_forecast, err = prophet_forecast(
df_prophet,
periods=forecast_steps,
freq=freq,
daily_seasonality=daily_seasonality,
weekly_seasonality=weekly_seasonality,
yearly_seasonality=yearly_seasonality,
seasonality_mode=seasonality_mode,
changepoint_prior_scale=changepoint_prior_scale,
)
if err:
return pd.DataFrame(), err
future_only = full_forecast.loc[len(df_prophet):, ["ds", "yhat", "yhat_lower", "yhat_upper"]]
return future_only, ""
def create_forecast_plot(forecast_df):
"""Creates the forecast plot."""
if forecast_df.empty:
return go.Figure()
fig = go.Figure()
fig.add_trace(go.Scatter(
x=forecast_df["ds"],
y=forecast_df["yhat"],
mode="lines",
name="Forecast",
line=dict(color="blue", width=2)
))
fig.add_trace(go.Scatter(
x=forecast_df["ds"],
y=forecast_df["yhat_lower"],
fill=None,
mode="lines",
line=dict(width=0),
showlegend=True,
name="Lower Bound"
))
fig.add_trace(go.Scatter(
x=forecast_df["ds"],
y=forecast_df["yhat_upper"],
fill="tonexty",
mode="lines",
line=dict(width=0),
name="Upper Bound"
))
fig.update_layout(
title="Price Forecast",
xaxis_title="Time",
yaxis_title="Price",
hovermode="x unified",
template="plotly_white",
)
return fig
# --- Model Training and Prediction ---
model = RandomForestClassifier() # Moved here
def train_model(df):
"""Train the AI model."""
if df.empty:
return # Or raise an exception, or return a default model.
df["target"] = (df["close"].pct_change() > 0.05).astype(int) # Target: 1 if price increased by >5%
features = df[["close", "volume"]].dropna()
target = df["target"].dropna()
if not features.empty and not target.empty: #check data is available
model.fit(features, target)
else:
print("Not enough data for model training.")
def predict_growth(latest_data):
"""Predict explosive growth."""
if not hasattr(model, 'estimators_') or len(model.estimators_) == 0: # Check if model is trained
return [0] # Or return an error message, or a default value
try:
prediction = model.predict(latest_data.reshape(1, -1))
return prediction
except Exception as e:
print(f"Prediction error: {e}")
return [0]
# --- Main Prediction and Display Function ---
def analyze_market(market_type, symbol, interval, forecast_steps, daily_seasonality, weekly_seasonality, yearly_seasonality, seasonality_mode, changepoint_prior_scale, sentiment_keyword=""):
"""Main function to orchestrate data fetching, analysis, and prediction."""
df = pd.DataFrame()
error_message = ""
sentiment_score = 0 # Initialize sentiment score
# 1. Data Fetching
try:
if market_type == "Crypto":
df = fetch_crypto_data(symbol, interval=interval)
elif market_type == "Stock":
df = fetch_stock_data(symbol, interval=interval)
else:
error_message = "Invalid market type selected."
return None, None, None, None, None, "", error_message, 0 # Also return sentiment
if sentiment_keyword: # If a keyword for sentiment is entered:
sentiment_score = fetch_sentiment_data(sentiment_keyword)
except Exception as e:
error_message = f"Data Fetching Error: {e}"
return None, None, None, None, None, "", error_message, 0 #Return error + sentiment
if df.empty:
error_message = "No data fetched."
return None, None, None, None, None, "", error_message, 0 # Return empty + sentiment
# 2. Preprocessing & Technical Analysis
df["timestamp"] = pd.to_datetime(df["timestamp"])
numeric_cols = ["open", "high", "low", "close", "volume"]
df[numeric_cols] = df[numeric_cols].astype(float)
df = calculate_technical_indicators(df)
# 3. Prophet Forecasting
df_prophet = prepare_data_for_prophet(df)
freq = "h" if interval == "1h" or interval == "60min" else "d" #dynamic freq
forecast_df, prophet_error = prophet_wrapper(
df_prophet,
forecast_steps,
freq,
daily_seasonality,
weekly_seasonality,
yearly_seasonality,
seasonality_mode,
changepoint_prior_scale,
)
if prophet_error:
error_message = f"Prophet Error: {prophet_error}"
return None, None, None, None, None, "", error_message, sentiment_score #Return prophet error
forecast_plot = create_forecast_plot(forecast_df)
# 4. Create the Charts
tech_plot, rsi_plot, macd_plot = create_technical_charts(df)
# 5. Model Training and Prediction (simplified)
try:
train_model(df.copy()) # Train on a copy to avoid modifying original df.
if not df.empty: #Check if dataframe is empty or not.
latest_data = df[["close", "volume"]].iloc[-1].values # Get the last row for prediction.
growth_prediction = predict_growth(latest_data)
growth_label = "Yes" if growth_prediction[0] == 1 else "No"
else:
growth_label = "N/A: Insufficient Data" # If there is no data to predict the growth.
except Exception as e:
error_message = f"Model Error: {e}"
growth_label = "N/A"
# Prepare forecast data for the Dataframe output
forecast_df_display = forecast_df.loc[:, ["ds", "yhat", "yhat_lower", "yhat_upper"]].copy()
forecast_df_display.rename(columns={"ds": "Date", "yhat": "Forecast", "yhat_lower": "Lower Bound", "yhat_upper": "Upper Bound"}, inplace=True)
return forecast_plot, tech_plot, rsi_plot, macd_plot, forecast_df_display, growth_label, error_message, sentiment_score
# --- Gradio Interface ---
with gr.Blocks(theme=gr.themes.Base()) as demo:
gr.Markdown("# Market Analysis and Prediction")
with gr.Row():
with gr.Column():
market_type_dd = gr.Radio(label="Market Type", choices=["Crypto", "Stock"], value="Crypto")
symbol_dd = gr.Dropdown(label="Symbol", choices=CRYPTO_SYMBOLS, value="BTC-USD") # Use standardized symbols
interval_dd = gr.Dropdown(label="Interval", choices=INTERVAL_OPTIONS, value="1h")
forecast_steps_slider = gr.Slider(label="Forecast Steps", minimum=1, maximum=100, value=24, step=1)
daily_box = gr.Checkbox(label="Daily Seasonality", value=True)
weekly_box = gr.Checkbox(label="Weekly Seasonality", value=True)
yearly_box = gr.Checkbox(label="Yearly Seasonality", value=False)
seasonality_mode_dd = gr.Dropdown(label="Seasonality Mode", choices=["additive", "multiplicative"], value="additive")
changepoint_scale_slider = gr.Slider(label="Changepoint Prior Scale", minimum=0.01, maximum=1.0, step=0.01, value=0.05)
sentiment_keyword_txt = gr.Textbox(label="Sentiment Keyword (optional)") #Add Sentiment input
with gr.Column():
forecast_plot = gr.Plot(label="Price Forecast")
with gr.Row():
tech_plot = gr.Plot(label="Technical Analysis")
rsi_plot = gr.Plot(label="RSI Indicator")
with gr.Row():
macd_plot = gr.Plot(label="MACD")
forecast_df = gr.Dataframe(label="Forecast Data", headers=["Date", "Forecast", "Lower Bound", "Upper Bound"])
growth_label_output = gr.Label(label="Explosive Growth Prediction") # Added for prediction.
sentiment_label_output = gr.Number(label="Sentiment Score") # Added for sentiment output
# Event Listener to update symbol dropdown based on market type
def update_symbol_choices(market_type):
if market_type == "Crypto":
return gr.Dropdown(choices=CRYPTO_SYMBOLS, value="BTC-USD")
elif market_type == "Stock":
return gr.Dropdown(choices=STOCK_SYMBOLS, value="AAPL") # Default to AAPL for stock
return gr.Dropdown(choices=[], value=None) # Shouldn't happen, but safety check
market_type_dd.change(fn=update_symbol_choices, inputs=[market_type_dd], outputs=[symbol_dd])
analyze_button = gr.Button("Analyze Market", variant="primary")
analyze_button.click(
fn=analyze_market,
inputs=[
market_type_dd,
symbol_dd,
interval_dd,
forecast_steps_slider,
daily_box,
weekly_box,
yearly_box,
seasonality_mode_dd,
changepoint_scale_slider,
sentiment_keyword_txt, # Add sentiment keyword to the input
],
outputs=[forecast_plot, tech_plot, rsi_plot, macd_plot, forecast_df, growth_label_output, gr.Label(label="Error Message"), sentiment_label_output] # Add sentiment score to the output
)
if __name__ == "__main__":
demo.launch() |