File size: 15,697 Bytes
c63bfc4
760a820
 
c63bfc4
760a820
 
 
06772d8
 
 
 
87def00
 
06772d8
87def00
06772d8
87def00
06772d8
c63bfc4
06772d8
c63bfc4
06772d8
 
 
 
 
 
 
 
 
 
 
 
c63bfc4
06772d8
 
 
 
 
 
c63bfc4
06772d8
 
c63bfc4
06772d8
 
 
 
 
 
 
 
 
 
 
 
c63bfc4
 
 
 
 
 
 
 
 
 
 
06772d8
c63bfc4
 
 
 
87def00
760a820
87def00
 
 
 
760a820
 
 
 
 
 
87def00
760a820
 
 
 
 
87def00
760a820
 
 
 
87def00
760a820
 
 
87def00
 
 
 
760a820
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87def00
c63df78
87def00
c63df78
 
 
 
 
 
87def00
c63df78
 
87def00
c63df78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87def00
c63df78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87def00
c63df78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c63bfc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87def00
c63bfc4
87def00
 
 
c63bfc4
87def00
c63bfc4
 
 
 
 
 
 
 
c63df78
c63bfc4
 
 
 
 
87def00
c63bfc4
 
 
87def00
c63bfc4
87def00
 
 
 
 
 
 
 
c63df78
 
 
 
 
 
 
 
 
 
87def00
 
c63bfc4
87def00
 
c63df78
87def00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c63bfc4
87def00
 
 
 
 
 
 
 
06772d8
87def00
 
 
 
 
 
 
c63bfc4
87def00
 
 
 
 
 
 
 
 
 
c63bfc4
87def00
 
 
 
06772d8
87def00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c63bfc4
87def00
c63bfc4
87def00
c63df78
 
87def00
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
# app.py
import gradio as gr
import pandas as pd
import numpy as np
from prophet import Prophet
import plotly.graph_objs as go
import math
import requests
from sklearn.ensemble import RandomForestClassifier
from textblob import TextBlob
import yfinance as yf  # Import yfinance

# --- Constants ---
CRYPTO_SYMBOLS = ["BTC-USD", "ETH-USD"]  # Use standardized symbols
STOCK_SYMBOLS = ["AAPL", "MSFT"]
INTERVAL_OPTIONS = ["1h", "1d"]  # 1h not available for yfinance for stocks; use 1d for stocks.

# --- Data Fetching Functions (Revised) ---
def fetch_crypto_data(symbol, interval="1h", limit=100):
    """Fetch crypto market data using yfinance (Yahoo Finance)."""
    try:
        # yfinance uses standardized symbols (e.g., BTC-USD)
        ticker = yf.Ticker(symbol)
        # Handle different intervals.  Yahoo Finance has limitations.
        if interval == "1h":
          period = "1d"  #  yfinance doesn't support 1h for historical data, so we'll use 1d and resample.
          df = ticker.history(period=period, interval="1h")
        elif interval == "1d":
          df = ticker.history(period="1y", interval=interval) # Get 1 year of data
        else:
            raise ValueError("Invalid interval for yfinance.")
        if df.empty:
           raise Exception("No data returned from yfinance.")

        df.reset_index(inplace=True)
        df.rename(columns={"Datetime": "timestamp", "Open": "open", "High": "high", "Low": "low", "Close": "close", "Volume": "volume"}, inplace=True)
        df = df[["timestamp", "open", "high", "low", "close", "volume"]]  # Select and order columns
        return df.dropna()
    except Exception as e:
        raise Exception(f"Error fetching crypto data from yfinance: {e}")

def fetch_stock_data(symbol, interval="1d"):  # Simplified for yfinance
    """Fetch stock market data using yfinance."""
    try:
        ticker = yf.Ticker(symbol)
        df = ticker.history(period="1y", interval=interval)  # Get 1 year of daily data

        if df.empty:
            raise Exception("No data returned from yfinance.")

        df.reset_index(inplace=True)
        df.rename(columns={"Date": "timestamp", "Open": "open", "High": "high", "Low": "low", "Close": "close", "Volume": "volume"}, inplace=True)
        df = df[["timestamp", "open", "high", "low", "close", "volume"]]
        return df.dropna()
    except Exception as e:
        raise Exception(f"Error fetching stock data from yfinance: {e}")


def fetch_sentiment_data(keyword):  # Placeholder - replace with a real sentiment analysis method
    """Analyze sentiment from social media (placeholder)."""
    try:
        tweets = [
            f"{keyword} is going to moon!",
            f"I hate {keyword}, it's trash!",
            f"{keyword} is amazing!"
        ]
        sentiments = [TextBlob(tweet).sentiment.polarity for tweet in tweets]
        return sum(sentiments) / len(sentiments) if sentiments else 0  # Avoid ZeroDivisionError
    except Exception as e:
        print(f"Sentiment analysis error: {e}")
        return 0

# --- Technical Analysis Functions ---
def calculate_technical_indicators(df):
    """Calculates RSI, MACD, and Bollinger Bands."""
    if df.empty:
        return df

    # RSI Calculation
    delta = df['close'].diff()
    gain = (delta.where(delta > 0, 0)).rolling(window=14).mean()
    loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean()
    rs = gain / loss
    df['RSI'] = 100 - (100 / (1 + rs))

    # MACD Calculation
    exp1 = df['close'].ewm(span=12, adjust=False).mean()
    exp2 = df['close'].ewm(span=26, adjust=False).mean()
    df['MACD'] = exp1 - exp2
    df['Signal_Line'] = df['MACD'].ewm(span=9, adjust=False).mean()

    # Bollinger Bands Calculation
    df['MA20'] = df['close'].rolling(window=20).mean()
    df['BB_upper'] = df['MA20'] + 2 * df['close'].rolling(window=20).std()
    df['BB_lower'] = df['MA20'] - 2 * df['close'].rolling(window=20).std()

    return df

def create_technical_charts(df):
    """Creates technical analysis charts (Price, RSI, MACD)."""
    if df.empty:
        return None, None, None

    fig1 = go.Figure()
    fig1.add_trace(go.Candlestick(
        x=df['timestamp'],
        open=df['open'],
        high=df['high'],
        low=df['low'],
        close=df['close'],
        name='Price'
    ))
    fig1.add_trace(go.Scatter(x=df['timestamp'], y=df['BB_upper'], name='Upper BB', line=dict(color='gray', dash='dash')))
    fig1.add_trace(go.Scatter(x=df['timestamp'], y=df['BB_lower'], name='Lower BB', line=dict(color='gray', dash='dash')))
    fig1.update_layout(title='Price and Bollinger Bands', xaxis_title='Date', yaxis_title='Price')

    fig2 = go.Figure()
    fig2.add_trace(go.Scatter(x=df['timestamp'], y=df['RSI'], name='RSI'))
    fig2.add_hline(y=70, line_dash="dash", line_color="red")
    fig2.add_hline(y=30, line_dash="dash", line_color="green")
    fig2.update_layout(title='RSI Indicator', xaxis_title='Date', yaxis_title='RSI')

    fig3 = go.Figure()
    fig3.add_trace(go.Scatter(x=df['timestamp'], y=df['MACD'], name='MACD'))
    fig3.add_trace(go.Scatter(x=df['timestamp'], y=df['Signal_Line'], name='Signal Line'))
    fig3.update_layout(title='MACD', xaxis_title='Date', yaxis_title='Value')

    return fig1, fig2, fig3

# --- Prophet Forecasting Functions ---
def prepare_data_for_prophet(df):
    """Prepares data for Prophet."""
    if df.empty:
        return pd.DataFrame(columns=["ds", "y"])
    df_prophet = df.rename(columns={"timestamp": "ds", "close": "y"})
    return df_prophet[["ds", "y"]]

def prophet_forecast(df_prophet, periods=10, freq="h", daily_seasonality=False, weekly_seasonality=False, yearly_seasonality=False, seasonality_mode="additive", changepoint_prior_scale=0.05):
    """Performs Prophet forecasting."""
    if df_prophet.empty:
        return pd.DataFrame(), "No data for Prophet."

    try:
        model = Prophet(
            daily_seasonality=daily_seasonality,
            weekly_seasonality=weekly_seasonality,
            yearly_seasonality=yearly_seasonality,
            seasonality_mode=seasonality_mode,
            changepoint_prior_scale=changepoint_prior_scale,
        )
        model.fit(df_prophet)
        future = model.make_future_dataframe(periods=periods, freq=freq)
        forecast = model.predict(future)
        return forecast, ""
    except Exception as e:
        return pd.DataFrame(), f"Forecast error: {e}"

def prophet_wrapper(df_prophet, forecast_steps, freq, daily_seasonality, weekly_seasonality, yearly_seasonality, seasonality_mode, changepoint_prior_scale):
    """Wrapper for Prophet forecasting."""
    if len(df_prophet) < 10:
        return pd.DataFrame(), "Not enough data for forecasting (need >=10 rows)."

    full_forecast, err = prophet_forecast(
        df_prophet,
        periods=forecast_steps,
        freq=freq,
        daily_seasonality=daily_seasonality,
        weekly_seasonality=weekly_seasonality,
        yearly_seasonality=yearly_seasonality,
        seasonality_mode=seasonality_mode,
        changepoint_prior_scale=changepoint_prior_scale,
    )
    if err:
        return pd.DataFrame(), err

    future_only = full_forecast.loc[len(df_prophet):, ["ds", "yhat", "yhat_lower", "yhat_upper"]]
    return future_only, ""

def create_forecast_plot(forecast_df):
    """Creates the forecast plot."""
    if forecast_df.empty:
        return go.Figure()

    fig = go.Figure()
    fig.add_trace(go.Scatter(
        x=forecast_df["ds"],
        y=forecast_df["yhat"],
        mode="lines",
        name="Forecast",
        line=dict(color="blue", width=2)
    ))

    fig.add_trace(go.Scatter(
        x=forecast_df["ds"],
        y=forecast_df["yhat_lower"],
        fill=None,
        mode="lines",
        line=dict(width=0),
        showlegend=True,
        name="Lower Bound"
    ))

    fig.add_trace(go.Scatter(
        x=forecast_df["ds"],
        y=forecast_df["yhat_upper"],
        fill="tonexty",
        mode="lines",
        line=dict(width=0),
        name="Upper Bound"
    ))

    fig.update_layout(
        title="Price Forecast",
        xaxis_title="Time",
        yaxis_title="Price",
        hovermode="x unified",
        template="plotly_white",
    )
    return fig

# --- Model Training and Prediction ---
model = RandomForestClassifier()  # Moved here

def train_model(df):
    """Train the AI model."""
    if df.empty:
        return  # Or raise an exception, or return a default model.
    df["target"] = (df["close"].pct_change() > 0.05).astype(int)  # Target: 1 if price increased by >5%
    features = df[["close", "volume"]].dropna()
    target = df["target"].dropna()
    if not features.empty and not target.empty: #check data is available
      model.fit(features, target)
    else:
        print("Not enough data for model training.")

def predict_growth(latest_data):
    """Predict explosive growth."""
    if not hasattr(model, 'estimators_') or len(model.estimators_) == 0:  # Check if model is trained
        return [0]  # Or return an error message, or a default value

    try:
        prediction = model.predict(latest_data.reshape(1, -1))
        return prediction
    except Exception as e:
        print(f"Prediction error: {e}")
        return [0]

# --- Main Prediction and Display Function ---
def analyze_market(market_type, symbol, interval, forecast_steps, daily_seasonality, weekly_seasonality, yearly_seasonality, seasonality_mode, changepoint_prior_scale, sentiment_keyword=""):
    """Main function to orchestrate data fetching, analysis, and prediction."""
    df = pd.DataFrame()
    error_message = ""
    sentiment_score = 0  # Initialize sentiment score
    # 1. Data Fetching
    try:
        if market_type == "Crypto":
            df = fetch_crypto_data(symbol, interval=interval)
        elif market_type == "Stock":
            df = fetch_stock_data(symbol, interval=interval)
        else:
            error_message = "Invalid market type selected."
            return None, None, None, None, None, "", error_message, 0  # Also return sentiment

        if sentiment_keyword: # If a keyword for sentiment is entered:
            sentiment_score = fetch_sentiment_data(sentiment_keyword)
    except Exception as e:
        error_message = f"Data Fetching Error: {e}"
        return None, None, None, None, None, "", error_message, 0 #Return error + sentiment

    if df.empty:
        error_message = "No data fetched."
        return None, None, None, None, None, "", error_message, 0  # Return empty + sentiment
    # 2. Preprocessing & Technical Analysis
    df["timestamp"] = pd.to_datetime(df["timestamp"])
    numeric_cols = ["open", "high", "low", "close", "volume"]
    df[numeric_cols] = df[numeric_cols].astype(float)
    df = calculate_technical_indicators(df)

    # 3. Prophet Forecasting
    df_prophet = prepare_data_for_prophet(df)
    freq = "h" if interval == "1h" or interval == "60min" else "d" #dynamic freq
    forecast_df, prophet_error = prophet_wrapper(
        df_prophet,
        forecast_steps,
        freq,
        daily_seasonality,
        weekly_seasonality,
        yearly_seasonality,
        seasonality_mode,
        changepoint_prior_scale,
    )

    if prophet_error:
        error_message = f"Prophet Error: {prophet_error}"
        return None, None, None, None, None, "", error_message, sentiment_score #Return prophet error

    forecast_plot = create_forecast_plot(forecast_df)

    # 4. Create the Charts
    tech_plot, rsi_plot, macd_plot = create_technical_charts(df)

    # 5. Model Training and Prediction (simplified)
    try:
        train_model(df.copy()) # Train on a copy to avoid modifying original df.
        if not df.empty: #Check if dataframe is empty or not.
             latest_data = df[["close", "volume"]].iloc[-1].values # Get the last row for prediction.
             growth_prediction = predict_growth(latest_data)
             growth_label = "Yes" if growth_prediction[0] == 1 else "No"
        else:
            growth_label = "N/A: Insufficient Data" # If there is no data to predict the growth.

    except Exception as e:
        error_message = f"Model Error: {e}"
        growth_label = "N/A"

    # Prepare forecast data for the Dataframe output
    forecast_df_display = forecast_df.loc[:, ["ds", "yhat", "yhat_lower", "yhat_upper"]].copy()
    forecast_df_display.rename(columns={"ds": "Date", "yhat": "Forecast", "yhat_lower": "Lower Bound", "yhat_upper": "Upper Bound"}, inplace=True)
    return forecast_plot, tech_plot, rsi_plot, macd_plot, forecast_df_display, growth_label, error_message, sentiment_score

# --- Gradio Interface ---
with gr.Blocks(theme=gr.themes.Base()) as demo:
    gr.Markdown("# Market Analysis and Prediction")

    with gr.Row():
        with gr.Column():
            market_type_dd = gr.Radio(label="Market Type", choices=["Crypto", "Stock"], value="Crypto")
            symbol_dd = gr.Dropdown(label="Symbol", choices=CRYPTO_SYMBOLS, value="BTC-USD")  # Use standardized symbols
            interval_dd = gr.Dropdown(label="Interval", choices=INTERVAL_OPTIONS, value="1h")
            forecast_steps_slider = gr.Slider(label="Forecast Steps", minimum=1, maximum=100, value=24, step=1)
            daily_box = gr.Checkbox(label="Daily Seasonality", value=True)
            weekly_box = gr.Checkbox(label="Weekly Seasonality", value=True)
            yearly_box = gr.Checkbox(label="Yearly Seasonality", value=False)
            seasonality_mode_dd = gr.Dropdown(label="Seasonality Mode", choices=["additive", "multiplicative"], value="additive")
            changepoint_scale_slider = gr.Slider(label="Changepoint Prior Scale", minimum=0.01, maximum=1.0, step=0.01, value=0.05)
            sentiment_keyword_txt = gr.Textbox(label="Sentiment Keyword (optional)") #Add Sentiment input

        with gr.Column():
            forecast_plot = gr.Plot(label="Price Forecast")
            with gr.Row():
                tech_plot = gr.Plot(label="Technical Analysis")
                rsi_plot = gr.Plot(label="RSI Indicator")
            with gr.Row():
                macd_plot = gr.Plot(label="MACD")
            forecast_df = gr.Dataframe(label="Forecast Data", headers=["Date", "Forecast", "Lower Bound", "Upper Bound"])
            growth_label_output = gr.Label(label="Explosive Growth Prediction") # Added for prediction.
            sentiment_label_output = gr.Number(label="Sentiment Score") # Added for sentiment output

    # Event Listener to update symbol dropdown based on market type
    def update_symbol_choices(market_type):
        if market_type == "Crypto":
            return gr.Dropdown(choices=CRYPTO_SYMBOLS, value="BTC-USD")
        elif market_type == "Stock":
            return gr.Dropdown(choices=STOCK_SYMBOLS, value="AAPL") # Default to AAPL for stock
        return gr.Dropdown(choices=[], value=None)  # Shouldn't happen, but safety check
    market_type_dd.change(fn=update_symbol_choices, inputs=[market_type_dd], outputs=[symbol_dd])

    analyze_button = gr.Button("Analyze Market", variant="primary")
    analyze_button.click(
        fn=analyze_market,
        inputs=[
            market_type_dd,
            symbol_dd,
            interval_dd,
            forecast_steps_slider,
            daily_box,
            weekly_box,
            yearly_box,
            seasonality_mode_dd,
            changepoint_scale_slider,
            sentiment_keyword_txt,  # Add sentiment keyword to the input
        ],
        outputs=[forecast_plot, tech_plot, rsi_plot, macd_plot, forecast_df, growth_label_output, gr.Label(label="Error Message"), sentiment_label_output] # Add sentiment score to the output
    )

if __name__ == "__main__":
    demo.launch()