File size: 25,601 Bytes
35f9333
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
"""
AI-Powered Web Scraper - app.py
Professional-grade web content extraction and AI summarization tool for Hugging Face Spaces
"""

import gradio as gr
import requests
from bs4 import BeautifulSoup
from urllib.parse import urljoin, urlparse
import pandas as pd
from datetime import datetime
import json
import re
import time
from typing import List, Dict, Optional, Tuple
import logging
from pathlib import Path
import os
from dataclasses import dataclass
from transformers import pipeline
import nltk
from nltk.tokenize import sent_tokenize
import asyncio
import aiohttp
from concurrent.futures import ThreadPoolExecutor
import hashlib

# Download required NLTK data
try:
    nltk.data.find('tokenizers/punkt')
except LookupError:
    nltk.download('punkt', quiet=True)

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

@dataclass
class ScrapedContent:
    """Data class for scraped content with metadata"""
    url: str
    title: str
    content: str
    summary: str
    word_count: int
    reading_time: int
    extracted_at: str
    author: Optional[str] = None
    publish_date: Optional[str] = None
    meta_description: Optional[str] = None
    keywords: List[str] = None

class SecurityValidator:
    """Security validation for URLs and content"""
    
    ALLOWED_SCHEMES = {'http', 'https'}
    BLOCKED_DOMAINS = {
        'localhost', '127.0.0.1', '0.0.0.0',
        '192.168.', '10.', '172.16.', '172.17.',
        '172.18.', '172.19.', '172.20.', '172.21.',
        '172.22.', '172.23.', '172.24.', '172.25.',
        '172.26.', '172.27.', '172.28.', '172.29.',
        '172.30.', '172.31.'
    }
    
    @classmethod
    def validate_url(cls, url: str) -> Tuple[bool, str]:
        """Validate URL for security concerns"""
        try:
            parsed = urlparse(url)
            
            # Check scheme
            if parsed.scheme not in cls.ALLOWED_SCHEMES:
                return False, f"Invalid scheme: {parsed.scheme}. Only HTTP/HTTPS allowed."
            
            # Check for blocked domains
            hostname = parsed.hostname or ''
            if any(blocked in hostname for blocked in cls.BLOCKED_DOMAINS):
                return False, "Access to internal/local networks is not allowed."
            
            # Basic malformed URL check
            if not parsed.netloc:
                return False, "Invalid URL format."
                
            return True, "URL is valid."
            
        except Exception as e:
            return False, f"URL validation error: {str(e)}"

class RobotsTxtChecker:
    """Check robots.txt compliance"""
    
    @staticmethod
    def can_fetch(url: str, user_agent: str = "*") -> bool:
        """Check if URL can be fetched according to robots.txt"""
        try:
            parsed_url = urlparse(url)
            robots_url = f"{parsed_url.scheme}://{parsed_url.netloc}/robots.txt"
            
            response = requests.get(robots_url, timeout=5)
            if response.status_code == 200:
                # Simple robots.txt parsing (basic implementation)
                lines = response.text.split('\n')
                user_agent_section = False
                
                for line in lines:
                    line = line.strip()
                    if line.startswith('User-agent:'):
                        agent = line.split(':', 1)[1].strip()
                        user_agent_section = agent == '*' or agent.lower() == user_agent.lower()
                    elif user_agent_section and line.startswith('Disallow:'):
                        disallowed = line.split(':', 1)[1].strip()
                        if disallowed and url.endswith(disallowed):
                            return False
                            
            return True
            
        except Exception:
            # If robots.txt can't be fetched, assume allowed
            return True

class ContentExtractor:
    """Advanced content extraction with multiple strategies"""
    
    def __init__(self):
        self.session = requests.Session()
        self.session.headers.update({
            'User-Agent': 'Mozilla/5.0 (compatible; AI-WebScraper/1.0; Research Tool)',
            'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
            'Accept-Language': 'en-US,en;q=0.5',
            'Accept-Encoding': 'gzip, deflate',
            'Connection': 'keep-alive',
            'Upgrade-Insecure-Requests': '1',
        })
    
    def extract_content(self, url: str) -> Optional[ScrapedContent]:
        """Extract content from URL with robust error handling"""
        try:
            # Security validation
            is_valid, validation_msg = SecurityValidator.validate_url(url)
            if not is_valid:
                raise ValueError(f"Security validation failed: {validation_msg}")
            
            # Check robots.txt
            if not RobotsTxtChecker.can_fetch(url):
                raise ValueError("robots.txt disallows scraping this URL")
            
            # Fetch content
            response = self.session.get(url, timeout=15)
            response.raise_for_status()
            
            # Parse HTML
            soup = BeautifulSoup(response.content, 'html.parser')
            
            # Extract metadata
            title = self._extract_title(soup)
            author = self._extract_author(soup)
            publish_date = self._extract_publish_date(soup)
            meta_description = self._extract_meta_description(soup)
            
            # Extract main content
            content = self._extract_main_content(soup)
            
            if not content or len(content.strip()) < 100:
                raise ValueError("Insufficient content extracted")
            
            # Calculate metrics
            word_count = len(content.split())
            reading_time = max(1, word_count // 200)  # Average reading speed
            
            # Extract keywords
            keywords = self._extract_keywords(content)
            
            return ScrapedContent(
                url=url,
                title=title,
                content=content,
                summary="",  # Will be filled by AI summarizer
                word_count=word_count,
                reading_time=reading_time,
                extracted_at=datetime.now().isoformat(),
                author=author,
                publish_date=publish_date,
                meta_description=meta_description,
                keywords=keywords
            )
            
        except Exception as e:
            logger.error(f"Content extraction failed for {url}: {str(e)}")
            raise
    
    def _extract_title(self, soup: BeautifulSoup) -> str:
        """Extract page title with fallbacks"""
        # Try meta og:title first
        og_title = soup.find('meta', property='og:title')
        if og_title and og_title.get('content'):
            return og_title['content'].strip()
        
        # Try regular title tag
        title_tag = soup.find('title')
        if title_tag:
            return title_tag.get_text().strip()
        
        # Try h1 as fallback
        h1_tag = soup.find('h1')
        if h1_tag:
            return h1_tag.get_text().strip()
        
        return "No title found"
    
    def _extract_author(self, soup: BeautifulSoup) -> Optional[str]:
        """Extract author information"""
        # Try multiple selectors for author
        author_selectors = [
            'meta[name="author"]',
            'meta[property="article:author"]',
            '.author',
            '.byline',
            '[rel="author"]'
        ]
        
        for selector in author_selectors:
            element = soup.select_one(selector)
            if element:
                if element.name == 'meta':
                    return element.get('content', '').strip()
                else:
                    return element.get_text().strip()
        
        return None
    
    def _extract_publish_date(self, soup: BeautifulSoup) -> Optional[str]:
        """Extract publication date"""
        date_selectors = [
            'meta[property="article:published_time"]',
            'meta[name="publishdate"]',
            'time[datetime]',
            '.publish-date',
            '.date'
        ]
        
        for selector in date_selectors:
            element = soup.select_one(selector)
            if element:
                if element.name == 'meta':
                    return element.get('content', '').strip()
                elif element.name == 'time':
                    return element.get('datetime', '').strip()
                else:
                    return element.get_text().strip()
        
        return None
    
    def _extract_meta_description(self, soup: BeautifulSoup) -> Optional[str]:
        """Extract meta description"""
        meta_desc = soup.find('meta', attrs={'name': 'description'})
        if meta_desc:
            return meta_desc.get('content', '').strip()
        
        og_desc = soup.find('meta', property='og:description')
        if og_desc:
            return og_desc.get('content', '').strip()
        
        return None
    
    def _extract_main_content(self, soup: BeautifulSoup) -> str:
        """Extract main content with multiple strategies"""
        # Remove unwanted elements
        for element in soup(['script', 'style', 'nav', 'header', 'footer', 
                           'aside', 'advertisement', '.ads', '.sidebar']):
            element.decompose()
        
        # Try content-specific selectors first
        content_selectors = [
            'article',
            'main',
            '.content',
            '.post-content',
            '.entry-content',
            '.article-body',
            '#content',
            '.story-body'
        ]
        
        for selector in content_selectors:
            element = soup.select_one(selector)
            if element:
                text = element.get_text(separator=' ', strip=True)
                if len(text) > 200:  # Minimum content threshold
                    return self._clean_text(text)
        
        # Fallback: extract from body
        body = soup.find('body')
        if body:
            text = body.get_text(separator=' ', strip=True)
            return self._clean_text(text)
        
        # Last resort: all text
        return self._clean_text(soup.get_text(separator=' ', strip=True))
    
    def _clean_text(self, text: str) -> str:
        """Clean extracted text"""
        # Remove extra whitespace
        text = re.sub(r'\s+', ' ', text)
        
        # Remove common unwanted patterns
        text = re.sub(r'Subscribe.*?newsletter', '', text, flags=re.IGNORECASE)
        text = re.sub(r'Click here.*?more', '', text, flags=re.IGNORECASE)
        text = re.sub(r'Advertisement', '', text, flags=re.IGNORECASE)
        
        return text.strip()
    
    def _extract_keywords(self, content: str) -> List[str]:
        """Extract basic keywords from content"""
        # Simple keyword extraction (can be enhanced with NLP)
        words = re.findall(r'\b[A-Za-z]{4,}\b', content.lower())
        word_freq = {}
        
        for word in words:
            if word not in ['that', 'this', 'with', 'from', 'they', 'have', 'been', 'were', 'said']:
                word_freq[word] = word_freq.get(word, 0) + 1
        
        # Return top 10 keywords
        sorted_words = sorted(word_freq.items(), key=lambda x: x[1], reverse=True)
        return [word for word, freq in sorted_words[:10]]

class AISummarizer:
    """AI-powered content summarization"""
    
    def __init__(self):
        self.summarizer = None
        self._load_model()
    
    def _load_model(self):
        """Load summarization model with error handling"""
        try:
            self.summarizer = pipeline(
                "summarization",
                model="facebook/bart-large-cnn",
                tokenizer="facebook/bart-large-cnn"
            )
            logger.info("Summarization model loaded successfully")
        except Exception as e:
            logger.error(f"Failed to load summarization model: {e}")
            # Fallback to a smaller model
            try:
                self.summarizer = pipeline(
                    "summarization",
                    model="sshleifer/distilbart-cnn-12-6"
                )
                logger.info("Fallback summarization model loaded")
            except Exception as e2:
                logger.error(f"Failed to load fallback model: {e2}")
                self.summarizer = None
    
    def summarize(self, content: str, max_length: int = 300) -> str:
        """Generate AI summary of content"""
        if not self.summarizer:
            return self._extractive_summary(content)
        
        try:
            # Split content into chunks if too long
            max_input_length = 1024
            chunks = self._split_content(content, max_input_length)
            
            summaries = []
            for chunk in chunks:
                if len(chunk.split()) < 20:  # Skip very short chunks
                    continue
                    
                result = self.summarizer(
                    chunk,
                    max_length=min(max_length, len(chunk.split()) // 2),
                    min_length=30,
                    do_sample=False
                )
                summaries.append(result[0]['summary_text'])
            
            # Combine summaries
            combined = ' '.join(summaries)
            
            # If still too long, summarize again
            if len(combined.split()) > max_length:
                result = self.summarizer(
                    combined,
                    max_length=max_length,
                    min_length=50,
                    do_sample=False
                )
                return result[0]['summary_text']
            
            return combined
            
        except Exception as e:
            logger.error(f"AI summarization failed: {e}")
            return self._extractive_summary(content)
    
    def _split_content(self, content: str, max_length: int) -> List[str]:
        """Split content into manageable chunks"""
        sentences = sent_tokenize(content)
        chunks = []
        current_chunk = []
        current_length = 0
        
        for sentence in sentences:
            sentence_length = len(sentence.split())
            if current_length + sentence_length > max_length and current_chunk:
                chunks.append(' '.join(current_chunk))
                current_chunk = [sentence]
                current_length = sentence_length
            else:
                current_chunk.append(sentence)
                current_length += sentence_length
        
        if current_chunk:
            chunks.append(' '.join(current_chunk))
        
        return chunks
    
    def _extractive_summary(self, content: str) -> str:
        """Fallback extractive summarization"""
        sentences = sent_tokenize(content)
        if len(sentences) <= 3:
            return content
        
        # Simple extractive approach: take first, middle, and last sentences
        summary_sentences = [
            sentences[0],
            sentences[len(sentences) // 2],
            sentences[-1]
        ]
        
        return ' '.join(summary_sentences)

class WebScraperApp:
    """Main application class"""
    
    def __init__(self):
        self.extractor = ContentExtractor()
        self.summarizer = AISummarizer()
        self.scraped_data = []
    
    def process_url(self, url: str, summary_length: int = 300) -> Tuple[str, str, str, str]:
        """Process a single URL and return results"""
        try:
            if not url.strip():
                return "❌ Error", "Please enter a valid URL", "", ""
            
            # Add protocol if missing
            if not url.startswith(('http://', 'https://')):
                url = 'https://' + url
            
            # Extract content
            with gr.update():  # Show progress
                scraped_content = self.extractor.extract_content(url)
            
            # Generate summary
            summary = self.summarizer.summarize(scraped_content.content, summary_length)
            scraped_content.summary = summary
            
            # Store result
            self.scraped_data.append(scraped_content)
            
            # Format results
            metadata = f"""
            **πŸ“Š Content Analysis**
            - **Title:** {scraped_content.title}
            - **Author:** {scraped_content.author or 'Not found'}
            - **Published:** {scraped_content.publish_date or 'Not found'}
            - **Word Count:** {scraped_content.word_count:,}
            - **Reading Time:** {scraped_content.reading_time} minutes
            - **Extracted:** {scraped_content.extracted_at}
            """
            
            keywords_text = f"**🏷️ Keywords:** {', '.join(scraped_content.keywords[:10])}" if scraped_content.keywords else ""
            
            return (
                "βœ… Success",
                metadata,
                f"**πŸ“ AI Summary ({len(summary.split())} words):**\n\n{summary}",
                keywords_text
            )
            
        except Exception as e:
            error_msg = f"Failed to process URL: {str(e)}"
            logger.error(error_msg)
            return "❌ Error", error_msg, "", ""
    
    def export_data(self, format_type: str) -> str:
        """Export scraped data to file"""
        if not self.scraped_data:
            return "No data to export"
        
        try:
            timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
            
            if format_type == "CSV":
                filename = f"scraped_data_{timestamp}.csv"
                df = pd.DataFrame([
                    {
                        'URL': item.url,
                        'Title': item.title,
                        'Author': item.author,
                        'Published': item.publish_date,
                        'Word Count': item.word_count,
                        'Reading Time': item.reading_time,
                        'Summary': item.summary,
                        'Keywords': ', '.join(item.keywords) if item.keywords else '',
                        'Extracted At': item.extracted_at
                    }
                    for item in self.scraped_data
                ])
                df.to_csv(filename, index=False)
                
            elif format_type == "JSON":
                filename = f"scraped_data_{timestamp}.json"
                data = [
                    {
                        'url': item.url,
                        'title': item.title,
                        'content': item.content,
                        'summary': item.summary,
                        'metadata': {
                            'author': item.author,
                            'publish_date': item.publish_date,
                            'word_count': item.word_count,
                            'reading_time': item.reading_time,
                            'keywords': item.keywords,
                            'extracted_at': item.extracted_at
                        }
                    }
                    for item in self.scraped_data
                ]
                with open(filename, 'w', encoding='utf-8') as f:
                    json.dump(data, f, indent=2, ensure_ascii=False)
            
            return filename
            
        except Exception as e:
            logger.error(f"Export failed: {e}")
            return f"Export failed: {str(e)}"
    
    def clear_data(self) -> str:
        """Clear all scraped data"""
        self.scraped_data.clear()
        return "Data cleared successfully"

def create_interface():
    """Create the Gradio interface"""
    app = WebScraperApp()
    
    # Custom CSS for professional appearance
    custom_css = """
    .gradio-container {
        max-width: 1200px;
        margin: auto;
    }
    .main-header {
        text-align: center;
        background: linear-gradient(90deg, #667eea 0%, #764ba2 100%);
        color: white;
        padding: 2rem;
        border-radius: 10px;
        margin-bottom: 2rem;
    }
    .feature-box {
        background: #f8f9fa;
        border: 1px solid #e9ecef;
        border-radius: 8px;
        padding: 1.5rem;
        margin: 1rem 0;
    }
    .status-success {
        color: #28a745;
        font-weight: bold;
    }
    .status-error {
        color: #dc3545;
        font-weight: bold;
    }
    """
    
    with gr.Blocks(css=custom_css, title="AI Web Scraper") as interface:
        
        # Header
        gr.HTML("""
        <div class="main-header">
            <h1>πŸ€– AI-Powered Web Scraper</h1>
            <p>Professional content extraction and summarization for journalists, analysts, and researchers</p>
        </div>
        """)
        
        # Main interface
        with gr.Row():
            with gr.Column(scale=2):
                # Input section
                gr.HTML("<div class='feature-box'><h3>πŸ“‘ Content Extraction</h3></div>")
                
                url_input = gr.Textbox(
                    label="Enter URL to scrape",
                    placeholder="https://example.com/article",
                    lines=1
                )
                
                with gr.Row():
                    summary_length = gr.Slider(
                        minimum=100,
                        maximum=500,
                        value=300,
                        step=50,
                        label="Summary Length (words)"
                    )
                
                scrape_btn = gr.Button("πŸš€ Extract & Summarize", variant="primary", size="lg")
                
                # Results section
                gr.HTML("<div class='feature-box'><h3>πŸ“Š Results</h3></div>")
                
                status_output = gr.Textbox(label="Status", lines=1, interactive=False)
                metadata_output = gr.Markdown(label="Metadata")
                summary_output = gr.Markdown(label="AI Summary")
                keywords_output = gr.Markdown(label="Keywords")
            
            with gr.Column(scale=1):
                # Export section
                gr.HTML("<div class='feature-box'><h3>πŸ’Ύ Export Options</h3></div>")
                
                export_format = gr.Radio(
                    choices=["CSV", "JSON"],
                    label="Export Format",
                    value="CSV"
                )
                
                export_btn = gr.Button("πŸ“₯ Export Data", variant="secondary")
                export_status = gr.Textbox(label="Export Status", lines=2, interactive=False)
                
                gr.HTML("<div class='feature-box'><h3>🧹 Data Management</h3></div>")
                clear_btn = gr.Button("πŸ—‘οΈ Clear All Data", variant="secondary")
                clear_status = gr.Textbox(label="Clear Status", lines=1, interactive=False)
        
        # Usage instructions
        with gr.Accordion("πŸ“š Usage Instructions", open=False):
            gr.Markdown("""
            ### How to Use This Tool
            
            1. **Enter URL**: Paste the URL of the article or webpage you want to analyze
            2. **Adjust Settings**: Set your preferred summary length
            3. **Extract Content**: Click "Extract & Summarize" to process the content
            4. **Review Results**: View the extracted metadata, AI summary, and keywords
            5. **Export Data**: Save your results in CSV or JSON format
            
            ### Features
            - πŸ›‘οΈ **Security**: Built-in URL validation and robots.txt compliance
            - πŸ€– **AI Summarization**: Advanced BART model for intelligent summarization
            - πŸ“Š **Rich Metadata**: Author, publication date, reading time, and more
            - 🏷️ **Keyword Extraction**: Automatic identification of key terms
            - πŸ’Ύ **Export Options**: CSV and JSON formats for further analysis
            - πŸ”„ **Batch Processing**: Process multiple URLs and export all results
            
            ### Supported Content
            - News articles and blog posts
            - Research papers and reports
            - Documentation and guides
            - Most HTML-based content
            
            ### Limitations
            - Respects robots.txt restrictions
            - Cannot access password-protected content
            - Some dynamic content may not be captured
            - Processing time varies with content length
            """)
        
        # Event handlers
        scrape_btn.click(
            fn=app.process_url,
            inputs=[url_input, summary_length],
            outputs=[status_output, metadata_output, summary_output, keywords_output]
        )
        
        export_btn.click(
            fn=app.export_data,
            inputs=[export_format],
            outputs=[export_status]
        )
        
        clear_btn.click(
            fn=app.clear_data,
            outputs=[clear_status]
        )
    
    return interface

# Launch the application
if __name__ == "__main__":
    interface = create_interface()
    interface.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False,
        show_error=True
    )