AI_Powered_Web_Scraper / app_minimal.py
MagicMeWizard's picture
Create app_minimal.py
e199fcf verified
"""
AI Dataset Studio - Minimal Version
Guaranteed to work with basic dependencies only
"""
import gradio as gr
import pandas as pd
import json
import re
import requests
from bs4 import BeautifulSoup
from urllib.parse import urlparse
from datetime import datetime
import logging
from typing import Dict, List, Tuple, Optional, Any
from dataclasses import dataclass, asdict
import uuid
import time
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
@dataclass
class SimpleScrapedItem:
"""Simplified scraped content structure"""
id: str
url: str
title: str
content: str
word_count: int
scraped_at: str
quality_score: float = 0.0
class SimpleWebScraper:
"""Simplified web scraper with basic functionality"""
def __init__(self):
self.session = requests.Session()
self.session.headers.update({
'User-Agent': 'Mozilla/5.0 (compatible; AI-DatasetStudio/1.0)',
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8'
})
def scrape_url(self, url: str) -> Optional[SimpleScrapedItem]:
"""Scrape a single URL"""
try:
if not self._validate_url(url):
return None
response = self.session.get(url, timeout=10)
response.raise_for_status()
soup = BeautifulSoup(response.content, 'html.parser')
# Extract title
title_tag = soup.find('title')
title = title_tag.get_text().strip() if title_tag else "Untitled"
# Extract content
# Remove unwanted elements
for element in soup(['script', 'style', 'nav', 'header', 'footer']):
element.decompose()
# Try to find main content
content_element = (soup.find('article') or
soup.find('main') or
soup.find(class_='content') or
soup.find('body'))
if content_element:
content = content_element.get_text(separator=' ', strip=True)
else:
content = soup.get_text(separator=' ', strip=True)
# Clean content
content = re.sub(r'\s+', ' ', content).strip()
# Calculate basic metrics
word_count = len(content.split())
quality_score = min(1.0, word_count / 100) if word_count > 0 else 0.0
return SimpleScrapedItem(
id=str(uuid.uuid4()),
url=url,
title=title,
content=content,
word_count=word_count,
scraped_at=datetime.now().isoformat(),
quality_score=quality_score
)
except Exception as e:
logger.error(f"Failed to scrape {url}: {e}")
return None
def _validate_url(self, url: str) -> bool:
"""Basic URL validation"""
try:
parsed = urlparse(url)
return parsed.scheme in ['http', 'https'] and parsed.netloc
except:
return False
def batch_scrape(self, urls: List[str], progress_callback=None) -> List[SimpleScrapedItem]:
"""Scrape multiple URLs"""
results = []
total = len(urls)
for i, url in enumerate(urls):
if progress_callback:
progress_callback((i + 1) / total, f"Scraping {i+1}/{total}")
item = self.scrape_url(url)
if item:
results.append(item)
time.sleep(1) # Rate limiting
return results
class SimpleDataProcessor:
"""Basic data processing"""
def process_items(self, items: List[SimpleScrapedItem], options: Dict[str, bool]) -> List[SimpleScrapedItem]:
"""Process scraped items"""
processed = []
for item in items:
# Apply quality filter
if options.get('quality_filter', True) and item.quality_score < 0.3:
continue
# Clean text if requested
if options.get('clean_text', True):
item.content = self._clean_text(item.content)
processed.append(item)
return processed
def _clean_text(self, text: str) -> str:
"""Basic text cleaning"""
# Remove URLs
text = re.sub(r'http\S+', '', text)
# Remove extra whitespace
text = re.sub(r'\s+', ' ', text)
# Remove common navigation text
text = re.sub(r'(Click here|Read more|Subscribe|Advertisement)', '', text, flags=re.IGNORECASE)
return text.strip()
class SimpleExporter:
"""Basic export functionality"""
def export_dataset(self, items: List[SimpleScrapedItem], format_type: str) -> str:
"""Export dataset"""
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
if format_type == "json":
filename = f"dataset_{timestamp}.json"
data = [asdict(item) for item in items]
with open(filename, 'w', encoding='utf-8') as f:
json.dump(data, f, indent=2, ensure_ascii=False)
return filename
elif format_type == "csv":
filename = f"dataset_{timestamp}.csv"
data = [asdict(item) for item in items]
df = pd.DataFrame(data)
df.to_csv(filename, index=False)
return filename
else:
raise ValueError(f"Unsupported format: {format_type}")
class SimpleDatasetStudio:
"""Simplified main application"""
def __init__(self):
self.scraper = SimpleWebScraper()
self.processor = SimpleDataProcessor()
self.exporter = SimpleExporter()
self.scraped_items = []
self.processed_items = []
self.current_project = None
def create_project(self, name: str) -> Dict[str, Any]:
"""Create a new project"""
self.current_project = {
'name': name,
'id': str(uuid.uuid4()),
'created_at': datetime.now().isoformat()
}
self.scraped_items = []
self.processed_items = []
return self.current_project
def scrape_urls(self, urls: List[str], progress_callback=None) -> Tuple[int, List[str]]:
"""Scrape URLs"""
url_list = [url.strip() for url in urls if url.strip()]
if not url_list:
return 0, ["No valid URLs provided"]
self.scraped_items = self.scraper.batch_scrape(url_list, progress_callback)
success_count = len(self.scraped_items)
failed_count = len(url_list) - success_count
errors = []
if failed_count > 0:
errors.append(f"{failed_count} URLs failed")
return success_count, errors
def process_data(self, options: Dict[str, bool]) -> int:
"""Process scraped data"""
if not self.scraped_items:
return 0
self.processed_items = self.processor.process_items(self.scraped_items, options)
return len(self.processed_items)
def get_preview(self) -> List[Dict[str, Any]]:
"""Get data preview"""
items = self.processed_items or self.scraped_items
preview = []
for item in items[:5]:
preview.append({
'Title': item.title[:50] + "..." if len(item.title) > 50 else item.title,
'Content Preview': item.content[:100] + "..." if len(item.content) > 100 else item.content,
'Word Count': item.word_count,
'Quality Score': round(item.quality_score, 2),
'URL': item.url[:50] + "..." if len(item.url) > 50 else item.url
})
return preview
def get_stats(self) -> Dict[str, Any]:
"""Get dataset statistics"""
items = self.processed_items or self.scraped_items
if not items:
return {}
word_counts = [item.word_count for item in items]
quality_scores = [item.quality_score for item in items]
return {
'total_items': len(items),
'avg_word_count': round(sum(word_counts) / len(word_counts)),
'avg_quality': round(sum(quality_scores) / len(quality_scores), 2),
'min_words': min(word_counts),
'max_words': max(word_counts)
}
def export_data(self, format_type: str) -> str:
"""Export dataset"""
items = self.processed_items or self.scraped_items
if not items:
raise ValueError("No data to export")
return self.exporter.export_dataset(items, format_type)
def create_simple_interface():
"""Create simplified Gradio interface"""
studio = SimpleDatasetStudio()
# Custom CSS
css = """
.container { max-width: 1200px; margin: auto; }
.header {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white; padding: 2rem; border-radius: 10px;
text-align: center; margin-bottom: 2rem;
}
.step-box {
background: #f8f9ff; border: 1px solid #e1e5ff;
border-radius: 8px; padding: 1.5rem; margin: 1rem 0;
}
"""
with gr.Blocks(css=css, title="AI Dataset Studio - Simple") as interface:
# Header
gr.HTML("""
<div class="header">
<h1>πŸš€ AI Dataset Studio - Simple Version</h1>
<p>Create datasets from web content - No complex setup required!</p>
</div>
""")
# Project state
project_state = gr.State({})
with gr.Tabs():
# Project Setup
with gr.Tab("πŸ“‹ Project Setup"):
gr.HTML('<div class="step-box"><h3>Step 1: Create Your Project</h3></div>')
project_name = gr.Textbox(
label="Project Name",
placeholder="e.g., News Articles Dataset",
value="My Dataset"
)
create_btn = gr.Button("Create Project", variant="primary")
project_status = gr.Markdown("")
def create_project_handler(name):
if not name.strip():
return "❌ Please enter a project name", {}
project = studio.create_project(name.strip())
status = f"""
βœ… **Project Created!**
**Name:** {project['name']}
**ID:** {project['id'][:8]}...
**Created:** {project['created_at'][:19]}
πŸ‘‰ Next: Go to Data Collection tab
"""
return status, project
create_btn.click(
fn=create_project_handler,
inputs=[project_name],
outputs=[project_status, project_state]
)
# Data Collection
with gr.Tab("πŸ•·οΈ Data Collection"):
gr.HTML('<div class="step-box"><h3>Step 2: Scrape Web Content</h3></div>')
urls_input = gr.Textbox(
label="URLs to Scrape (one per line)",
placeholder="https://example.com/article1\nhttps://example.com/article2",
lines=6
)
scrape_btn = gr.Button("Start Scraping", variant="primary")
scrape_status = gr.Markdown("")
def scrape_handler(urls_text, project, progress=gr.Progress()):
if not project:
return "❌ Create a project first"
urls = [url.strip() for url in urls_text.split('\n') if url.strip()]
if not urls:
return "❌ No URLs provided"
def progress_callback(pct, msg):
progress(pct, desc=msg)
success_count, errors = studio.scrape_urls(urls, progress_callback)
if success_count > 0:
return f"""
βœ… **Scraping Complete!**
**Success:** {success_count} URLs
**Failed:** {len(urls) - success_count} URLs
πŸ‘‰ Next: Go to Data Processing tab
"""
else:
return f"❌ Scraping failed: {', '.join(errors)}"
scrape_btn.click(
fn=scrape_handler,
inputs=[urls_input, project_state],
outputs=[scrape_status]
)
# Data Processing
with gr.Tab("βš™οΈ Data Processing"):
gr.HTML('<div class="step-box"><h3>Step 3: Clean and Process Data</h3></div>')
with gr.Row():
clean_text = gr.Checkbox(label="Clean Text", value=True)
quality_filter = gr.Checkbox(label="Quality Filter", value=True)
process_btn = gr.Button("Process Data", variant="primary")
process_status = gr.Markdown("")
def process_handler(clean, quality, project):
if not project:
return "❌ Create a project first"
options = {
'clean_text': clean,
'quality_filter': quality
}
processed_count = studio.process_data(options)
if processed_count > 0:
return f"""
βœ… **Processing Complete!**
**Processed:** {processed_count} items
πŸ‘‰ Next: Check Data Preview tab
"""
else:
return "❌ No items passed processing filters"
process_btn.click(
fn=process_handler,
inputs=[clean_text, quality_filter, project_state],
outputs=[process_status]
)
# Data Preview
with gr.Tab("πŸ‘€ Data Preview"):
gr.HTML('<div class="step-box"><h3>Step 4: Review Your Dataset</h3></div>')
refresh_btn = gr.Button("Refresh Preview")
preview_table = gr.DataFrame(label="Dataset Preview")
stats_display = gr.JSON(label="Statistics")
def refresh_handler(project):
if not project:
return None, {}
preview = studio.get_preview()
stats = studio.get_stats()
return preview, stats
refresh_btn.click(
fn=refresh_handler,
inputs=[project_state],
outputs=[preview_table, stats_display]
)
# Export
with gr.Tab("πŸ“€ Export Dataset"):
gr.HTML('<div class="step-box"><h3>Step 5: Export Your Dataset</h3></div>')
export_format = gr.Radio(
choices=["JSON", "CSV"],
label="Export Format",
value="JSON"
)
export_btn = gr.Button("Export Dataset", variant="primary")
export_status = gr.Markdown("")
export_file = gr.File(label="Download", visible=False)
def export_handler(format_type, project):
if not project:
return "❌ Create a project first", None
try:
filename = studio.export_data(format_type.lower())
return f"βœ… Export successful! File: {filename}", filename
except Exception as e:
return f"❌ Export failed: {str(e)}", None
export_btn.click(
fn=export_handler,
inputs=[export_format, project_state],
outputs=[export_status, export_file]
)
# Instructions
with gr.Accordion("πŸ“š Quick Guide", open=False):
gr.Markdown("""
## How to Use
1. **Create Project** - Give your dataset a name
2. **Add URLs** - Paste URLs of web pages to scrape
3. **Process Data** - Clean and filter the content
4. **Review** - Check the quality of your dataset
5. **Export** - Download in JSON or CSV format
## Features
- βœ… Smart content extraction
- βœ… Quality filtering
- βœ… Text cleaning
- βœ… JSON/CSV export
- βœ… Preview and statistics
## Tips
- Use high-quality source URLs
- Enable quality filtering for better results
- Review your data before exporting
- Start with 5-10 URLs to test
""")
return interface
# Launch application
if __name__ == "__main__":
logger.info("πŸš€ Starting AI Dataset Studio (Simple Version)")
try:
interface = create_simple_interface()
logger.info("βœ… Simple interface created successfully")
interface.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True
)
except Exception as e:
logger.error(f"❌ Failed to launch: {e}")
print("\nπŸ’‘ If you see import errors, try installing:")
print("pip install gradio pandas requests beautifulsoup4")
raise