Create app_minimal.py
Browse files- app_minimal.py +514 -0
app_minimal.py
ADDED
@@ -0,0 +1,514 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
AI Dataset Studio - Minimal Version
|
3 |
+
Guaranteed to work with basic dependencies only
|
4 |
+
"""
|
5 |
+
|
6 |
+
import gradio as gr
|
7 |
+
import pandas as pd
|
8 |
+
import json
|
9 |
+
import re
|
10 |
+
import requests
|
11 |
+
from bs4 import BeautifulSoup
|
12 |
+
from urllib.parse import urlparse
|
13 |
+
from datetime import datetime
|
14 |
+
import logging
|
15 |
+
from typing import Dict, List, Tuple, Optional, Any
|
16 |
+
from dataclasses import dataclass, asdict
|
17 |
+
import uuid
|
18 |
+
import time
|
19 |
+
|
20 |
+
# Configure logging
|
21 |
+
logging.basicConfig(level=logging.INFO)
|
22 |
+
logger = logging.getLogger(__name__)
|
23 |
+
|
24 |
+
@dataclass
|
25 |
+
class SimpleScrapedItem:
|
26 |
+
"""Simplified scraped content structure"""
|
27 |
+
id: str
|
28 |
+
url: str
|
29 |
+
title: str
|
30 |
+
content: str
|
31 |
+
word_count: int
|
32 |
+
scraped_at: str
|
33 |
+
quality_score: float = 0.0
|
34 |
+
|
35 |
+
class SimpleWebScraper:
|
36 |
+
"""Simplified web scraper with basic functionality"""
|
37 |
+
|
38 |
+
def __init__(self):
|
39 |
+
self.session = requests.Session()
|
40 |
+
self.session.headers.update({
|
41 |
+
'User-Agent': 'Mozilla/5.0 (compatible; AI-DatasetStudio/1.0)',
|
42 |
+
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8'
|
43 |
+
})
|
44 |
+
|
45 |
+
def scrape_url(self, url: str) -> Optional[SimpleScrapedItem]:
|
46 |
+
"""Scrape a single URL"""
|
47 |
+
try:
|
48 |
+
if not self._validate_url(url):
|
49 |
+
return None
|
50 |
+
|
51 |
+
response = self.session.get(url, timeout=10)
|
52 |
+
response.raise_for_status()
|
53 |
+
|
54 |
+
soup = BeautifulSoup(response.content, 'html.parser')
|
55 |
+
|
56 |
+
# Extract title
|
57 |
+
title_tag = soup.find('title')
|
58 |
+
title = title_tag.get_text().strip() if title_tag else "Untitled"
|
59 |
+
|
60 |
+
# Extract content
|
61 |
+
# Remove unwanted elements
|
62 |
+
for element in soup(['script', 'style', 'nav', 'header', 'footer']):
|
63 |
+
element.decompose()
|
64 |
+
|
65 |
+
# Try to find main content
|
66 |
+
content_element = (soup.find('article') or
|
67 |
+
soup.find('main') or
|
68 |
+
soup.find(class_='content') or
|
69 |
+
soup.find('body'))
|
70 |
+
|
71 |
+
if content_element:
|
72 |
+
content = content_element.get_text(separator=' ', strip=True)
|
73 |
+
else:
|
74 |
+
content = soup.get_text(separator=' ', strip=True)
|
75 |
+
|
76 |
+
# Clean content
|
77 |
+
content = re.sub(r'\s+', ' ', content).strip()
|
78 |
+
|
79 |
+
# Calculate basic metrics
|
80 |
+
word_count = len(content.split())
|
81 |
+
quality_score = min(1.0, word_count / 100) if word_count > 0 else 0.0
|
82 |
+
|
83 |
+
return SimpleScrapedItem(
|
84 |
+
id=str(uuid.uuid4()),
|
85 |
+
url=url,
|
86 |
+
title=title,
|
87 |
+
content=content,
|
88 |
+
word_count=word_count,
|
89 |
+
scraped_at=datetime.now().isoformat(),
|
90 |
+
quality_score=quality_score
|
91 |
+
)
|
92 |
+
|
93 |
+
except Exception as e:
|
94 |
+
logger.error(f"Failed to scrape {url}: {e}")
|
95 |
+
return None
|
96 |
+
|
97 |
+
def _validate_url(self, url: str) -> bool:
|
98 |
+
"""Basic URL validation"""
|
99 |
+
try:
|
100 |
+
parsed = urlparse(url)
|
101 |
+
return parsed.scheme in ['http', 'https'] and parsed.netloc
|
102 |
+
except:
|
103 |
+
return False
|
104 |
+
|
105 |
+
def batch_scrape(self, urls: List[str], progress_callback=None) -> List[SimpleScrapedItem]:
|
106 |
+
"""Scrape multiple URLs"""
|
107 |
+
results = []
|
108 |
+
total = len(urls)
|
109 |
+
|
110 |
+
for i, url in enumerate(urls):
|
111 |
+
if progress_callback:
|
112 |
+
progress_callback((i + 1) / total, f"Scraping {i+1}/{total}")
|
113 |
+
|
114 |
+
item = self.scrape_url(url)
|
115 |
+
if item:
|
116 |
+
results.append(item)
|
117 |
+
|
118 |
+
time.sleep(1) # Rate limiting
|
119 |
+
|
120 |
+
return results
|
121 |
+
|
122 |
+
class SimpleDataProcessor:
|
123 |
+
"""Basic data processing"""
|
124 |
+
|
125 |
+
def process_items(self, items: List[SimpleScrapedItem], options: Dict[str, bool]) -> List[SimpleScrapedItem]:
|
126 |
+
"""Process scraped items"""
|
127 |
+
processed = []
|
128 |
+
|
129 |
+
for item in items:
|
130 |
+
# Apply quality filter
|
131 |
+
if options.get('quality_filter', True) and item.quality_score < 0.3:
|
132 |
+
continue
|
133 |
+
|
134 |
+
# Clean text if requested
|
135 |
+
if options.get('clean_text', True):
|
136 |
+
item.content = self._clean_text(item.content)
|
137 |
+
|
138 |
+
processed.append(item)
|
139 |
+
|
140 |
+
return processed
|
141 |
+
|
142 |
+
def _clean_text(self, text: str) -> str:
|
143 |
+
"""Basic text cleaning"""
|
144 |
+
# Remove URLs
|
145 |
+
text = re.sub(r'http\S+', '', text)
|
146 |
+
# Remove extra whitespace
|
147 |
+
text = re.sub(r'\s+', ' ', text)
|
148 |
+
# Remove common navigation text
|
149 |
+
text = re.sub(r'(Click here|Read more|Subscribe|Advertisement)', '', text, flags=re.IGNORECASE)
|
150 |
+
return text.strip()
|
151 |
+
|
152 |
+
class SimpleExporter:
|
153 |
+
"""Basic export functionality"""
|
154 |
+
|
155 |
+
def export_dataset(self, items: List[SimpleScrapedItem], format_type: str) -> str:
|
156 |
+
"""Export dataset"""
|
157 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
158 |
+
|
159 |
+
if format_type == "json":
|
160 |
+
filename = f"dataset_{timestamp}.json"
|
161 |
+
data = [asdict(item) for item in items]
|
162 |
+
with open(filename, 'w', encoding='utf-8') as f:
|
163 |
+
json.dump(data, f, indent=2, ensure_ascii=False)
|
164 |
+
return filename
|
165 |
+
|
166 |
+
elif format_type == "csv":
|
167 |
+
filename = f"dataset_{timestamp}.csv"
|
168 |
+
data = [asdict(item) for item in items]
|
169 |
+
df = pd.DataFrame(data)
|
170 |
+
df.to_csv(filename, index=False)
|
171 |
+
return filename
|
172 |
+
|
173 |
+
else:
|
174 |
+
raise ValueError(f"Unsupported format: {format_type}")
|
175 |
+
|
176 |
+
class SimpleDatasetStudio:
|
177 |
+
"""Simplified main application"""
|
178 |
+
|
179 |
+
def __init__(self):
|
180 |
+
self.scraper = SimpleWebScraper()
|
181 |
+
self.processor = SimpleDataProcessor()
|
182 |
+
self.exporter = SimpleExporter()
|
183 |
+
|
184 |
+
self.scraped_items = []
|
185 |
+
self.processed_items = []
|
186 |
+
self.current_project = None
|
187 |
+
|
188 |
+
def create_project(self, name: str) -> Dict[str, Any]:
|
189 |
+
"""Create a new project"""
|
190 |
+
self.current_project = {
|
191 |
+
'name': name,
|
192 |
+
'id': str(uuid.uuid4()),
|
193 |
+
'created_at': datetime.now().isoformat()
|
194 |
+
}
|
195 |
+
self.scraped_items = []
|
196 |
+
self.processed_items = []
|
197 |
+
return self.current_project
|
198 |
+
|
199 |
+
def scrape_urls(self, urls: List[str], progress_callback=None) -> Tuple[int, List[str]]:
|
200 |
+
"""Scrape URLs"""
|
201 |
+
url_list = [url.strip() for url in urls if url.strip()]
|
202 |
+
if not url_list:
|
203 |
+
return 0, ["No valid URLs provided"]
|
204 |
+
|
205 |
+
self.scraped_items = self.scraper.batch_scrape(url_list, progress_callback)
|
206 |
+
success_count = len(self.scraped_items)
|
207 |
+
failed_count = len(url_list) - success_count
|
208 |
+
|
209 |
+
errors = []
|
210 |
+
if failed_count > 0:
|
211 |
+
errors.append(f"{failed_count} URLs failed")
|
212 |
+
|
213 |
+
return success_count, errors
|
214 |
+
|
215 |
+
def process_data(self, options: Dict[str, bool]) -> int:
|
216 |
+
"""Process scraped data"""
|
217 |
+
if not self.scraped_items:
|
218 |
+
return 0
|
219 |
+
|
220 |
+
self.processed_items = self.processor.process_items(self.scraped_items, options)
|
221 |
+
return len(self.processed_items)
|
222 |
+
|
223 |
+
def get_preview(self) -> List[Dict[str, Any]]:
|
224 |
+
"""Get data preview"""
|
225 |
+
items = self.processed_items or self.scraped_items
|
226 |
+
preview = []
|
227 |
+
|
228 |
+
for item in items[:5]:
|
229 |
+
preview.append({
|
230 |
+
'Title': item.title[:50] + "..." if len(item.title) > 50 else item.title,
|
231 |
+
'Content Preview': item.content[:100] + "..." if len(item.content) > 100 else item.content,
|
232 |
+
'Word Count': item.word_count,
|
233 |
+
'Quality Score': round(item.quality_score, 2),
|
234 |
+
'URL': item.url[:50] + "..." if len(item.url) > 50 else item.url
|
235 |
+
})
|
236 |
+
|
237 |
+
return preview
|
238 |
+
|
239 |
+
def get_stats(self) -> Dict[str, Any]:
|
240 |
+
"""Get dataset statistics"""
|
241 |
+
items = self.processed_items or self.scraped_items
|
242 |
+
if not items:
|
243 |
+
return {}
|
244 |
+
|
245 |
+
word_counts = [item.word_count for item in items]
|
246 |
+
quality_scores = [item.quality_score for item in items]
|
247 |
+
|
248 |
+
return {
|
249 |
+
'total_items': len(items),
|
250 |
+
'avg_word_count': round(sum(word_counts) / len(word_counts)),
|
251 |
+
'avg_quality': round(sum(quality_scores) / len(quality_scores), 2),
|
252 |
+
'min_words': min(word_counts),
|
253 |
+
'max_words': max(word_counts)
|
254 |
+
}
|
255 |
+
|
256 |
+
def export_data(self, format_type: str) -> str:
|
257 |
+
"""Export dataset"""
|
258 |
+
items = self.processed_items or self.scraped_items
|
259 |
+
if not items:
|
260 |
+
raise ValueError("No data to export")
|
261 |
+
|
262 |
+
return self.exporter.export_dataset(items, format_type)
|
263 |
+
|
264 |
+
def create_simple_interface():
|
265 |
+
"""Create simplified Gradio interface"""
|
266 |
+
|
267 |
+
studio = SimpleDatasetStudio()
|
268 |
+
|
269 |
+
# Custom CSS
|
270 |
+
css = """
|
271 |
+
.container { max-width: 1200px; margin: auto; }
|
272 |
+
.header {
|
273 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
274 |
+
color: white; padding: 2rem; border-radius: 10px;
|
275 |
+
text-align: center; margin-bottom: 2rem;
|
276 |
+
}
|
277 |
+
.step-box {
|
278 |
+
background: #f8f9ff; border: 1px solid #e1e5ff;
|
279 |
+
border-radius: 8px; padding: 1.5rem; margin: 1rem 0;
|
280 |
+
}
|
281 |
+
"""
|
282 |
+
|
283 |
+
with gr.Blocks(css=css, title="AI Dataset Studio - Simple") as interface:
|
284 |
+
|
285 |
+
# Header
|
286 |
+
gr.HTML("""
|
287 |
+
<div class="header">
|
288 |
+
<h1>π AI Dataset Studio - Simple Version</h1>
|
289 |
+
<p>Create datasets from web content - No complex setup required!</p>
|
290 |
+
</div>
|
291 |
+
""")
|
292 |
+
|
293 |
+
# Project state
|
294 |
+
project_state = gr.State({})
|
295 |
+
|
296 |
+
with gr.Tabs():
|
297 |
+
|
298 |
+
# Project Setup
|
299 |
+
with gr.Tab("π Project Setup"):
|
300 |
+
gr.HTML('<div class="step-box"><h3>Step 1: Create Your Project</h3></div>')
|
301 |
+
|
302 |
+
project_name = gr.Textbox(
|
303 |
+
label="Project Name",
|
304 |
+
placeholder="e.g., News Articles Dataset",
|
305 |
+
value="My Dataset"
|
306 |
+
)
|
307 |
+
|
308 |
+
create_btn = gr.Button("Create Project", variant="primary")
|
309 |
+
project_status = gr.Markdown("")
|
310 |
+
|
311 |
+
def create_project_handler(name):
|
312 |
+
if not name.strip():
|
313 |
+
return "β Please enter a project name", {}
|
314 |
+
|
315 |
+
project = studio.create_project(name.strip())
|
316 |
+
status = f"""
|
317 |
+
β
**Project Created!**
|
318 |
+
|
319 |
+
**Name:** {project['name']}
|
320 |
+
**ID:** {project['id'][:8]}...
|
321 |
+
**Created:** {project['created_at'][:19]}
|
322 |
+
|
323 |
+
π Next: Go to Data Collection tab
|
324 |
+
"""
|
325 |
+
return status, project
|
326 |
+
|
327 |
+
create_btn.click(
|
328 |
+
fn=create_project_handler,
|
329 |
+
inputs=[project_name],
|
330 |
+
outputs=[project_status, project_state]
|
331 |
+
)
|
332 |
+
|
333 |
+
# Data Collection
|
334 |
+
with gr.Tab("π·οΈ Data Collection"):
|
335 |
+
gr.HTML('<div class="step-box"><h3>Step 2: Scrape Web Content</h3></div>')
|
336 |
+
|
337 |
+
urls_input = gr.Textbox(
|
338 |
+
label="URLs to Scrape (one per line)",
|
339 |
+
placeholder="https://example.com/article1\nhttps://example.com/article2",
|
340 |
+
lines=6
|
341 |
+
)
|
342 |
+
|
343 |
+
scrape_btn = gr.Button("Start Scraping", variant="primary")
|
344 |
+
scrape_status = gr.Markdown("")
|
345 |
+
|
346 |
+
def scrape_handler(urls_text, project, progress=gr.Progress()):
|
347 |
+
if not project:
|
348 |
+
return "β Create a project first"
|
349 |
+
|
350 |
+
urls = [url.strip() for url in urls_text.split('\n') if url.strip()]
|
351 |
+
if not urls:
|
352 |
+
return "β No URLs provided"
|
353 |
+
|
354 |
+
def progress_callback(pct, msg):
|
355 |
+
progress(pct, desc=msg)
|
356 |
+
|
357 |
+
success_count, errors = studio.scrape_urls(urls, progress_callback)
|
358 |
+
|
359 |
+
if success_count > 0:
|
360 |
+
return f"""
|
361 |
+
β
**Scraping Complete!**
|
362 |
+
|
363 |
+
**Success:** {success_count} URLs
|
364 |
+
**Failed:** {len(urls) - success_count} URLs
|
365 |
+
|
366 |
+
π Next: Go to Data Processing tab
|
367 |
+
"""
|
368 |
+
else:
|
369 |
+
return f"β Scraping failed: {', '.join(errors)}"
|
370 |
+
|
371 |
+
scrape_btn.click(
|
372 |
+
fn=scrape_handler,
|
373 |
+
inputs=[urls_input, project_state],
|
374 |
+
outputs=[scrape_status]
|
375 |
+
)
|
376 |
+
|
377 |
+
# Data Processing
|
378 |
+
with gr.Tab("βοΈ Data Processing"):
|
379 |
+
gr.HTML('<div class="step-box"><h3>Step 3: Clean and Process Data</h3></div>')
|
380 |
+
|
381 |
+
with gr.Row():
|
382 |
+
clean_text = gr.Checkbox(label="Clean Text", value=True)
|
383 |
+
quality_filter = gr.Checkbox(label="Quality Filter", value=True)
|
384 |
+
|
385 |
+
process_btn = gr.Button("Process Data", variant="primary")
|
386 |
+
process_status = gr.Markdown("")
|
387 |
+
|
388 |
+
def process_handler(clean, quality, project):
|
389 |
+
if not project:
|
390 |
+
return "β Create a project first"
|
391 |
+
|
392 |
+
options = {
|
393 |
+
'clean_text': clean,
|
394 |
+
'quality_filter': quality
|
395 |
+
}
|
396 |
+
|
397 |
+
processed_count = studio.process_data(options)
|
398 |
+
|
399 |
+
if processed_count > 0:
|
400 |
+
return f"""
|
401 |
+
β
**Processing Complete!**
|
402 |
+
|
403 |
+
**Processed:** {processed_count} items
|
404 |
+
|
405 |
+
π Next: Check Data Preview tab
|
406 |
+
"""
|
407 |
+
else:
|
408 |
+
return "β No items passed processing filters"
|
409 |
+
|
410 |
+
process_btn.click(
|
411 |
+
fn=process_handler,
|
412 |
+
inputs=[clean_text, quality_filter, project_state],
|
413 |
+
outputs=[process_status]
|
414 |
+
)
|
415 |
+
|
416 |
+
# Data Preview
|
417 |
+
with gr.Tab("π Data Preview"):
|
418 |
+
gr.HTML('<div class="step-box"><h3>Step 4: Review Your Dataset</h3></div>')
|
419 |
+
|
420 |
+
refresh_btn = gr.Button("Refresh Preview")
|
421 |
+
preview_table = gr.DataFrame(label="Dataset Preview")
|
422 |
+
stats_display = gr.JSON(label="Statistics")
|
423 |
+
|
424 |
+
def refresh_handler(project):
|
425 |
+
if not project:
|
426 |
+
return None, {}
|
427 |
+
|
428 |
+
preview = studio.get_preview()
|
429 |
+
stats = studio.get_stats()
|
430 |
+
return preview, stats
|
431 |
+
|
432 |
+
refresh_btn.click(
|
433 |
+
fn=refresh_handler,
|
434 |
+
inputs=[project_state],
|
435 |
+
outputs=[preview_table, stats_display]
|
436 |
+
)
|
437 |
+
|
438 |
+
# Export
|
439 |
+
with gr.Tab("π€ Export Dataset"):
|
440 |
+
gr.HTML('<div class="step-box"><h3>Step 5: Export Your Dataset</h3></div>')
|
441 |
+
|
442 |
+
export_format = gr.Radio(
|
443 |
+
choices=["JSON", "CSV"],
|
444 |
+
label="Export Format",
|
445 |
+
value="JSON"
|
446 |
+
)
|
447 |
+
|
448 |
+
export_btn = gr.Button("Export Dataset", variant="primary")
|
449 |
+
export_status = gr.Markdown("")
|
450 |
+
export_file = gr.File(label="Download", visible=False)
|
451 |
+
|
452 |
+
def export_handler(format_type, project):
|
453 |
+
if not project:
|
454 |
+
return "β Create a project first", None
|
455 |
+
|
456 |
+
try:
|
457 |
+
filename = studio.export_data(format_type.lower())
|
458 |
+
return f"β
Export successful! File: {filename}", filename
|
459 |
+
except Exception as e:
|
460 |
+
return f"β Export failed: {str(e)}", None
|
461 |
+
|
462 |
+
export_btn.click(
|
463 |
+
fn=export_handler,
|
464 |
+
inputs=[export_format, project_state],
|
465 |
+
outputs=[export_status, export_file]
|
466 |
+
)
|
467 |
+
|
468 |
+
# Instructions
|
469 |
+
with gr.Accordion("π Quick Guide", open=False):
|
470 |
+
gr.Markdown("""
|
471 |
+
## How to Use
|
472 |
+
|
473 |
+
1. **Create Project** - Give your dataset a name
|
474 |
+
2. **Add URLs** - Paste URLs of web pages to scrape
|
475 |
+
3. **Process Data** - Clean and filter the content
|
476 |
+
4. **Review** - Check the quality of your dataset
|
477 |
+
5. **Export** - Download in JSON or CSV format
|
478 |
+
|
479 |
+
## Features
|
480 |
+
- β
Smart content extraction
|
481 |
+
- β
Quality filtering
|
482 |
+
- β
Text cleaning
|
483 |
+
- β
JSON/CSV export
|
484 |
+
- β
Preview and statistics
|
485 |
+
|
486 |
+
## Tips
|
487 |
+
- Use high-quality source URLs
|
488 |
+
- Enable quality filtering for better results
|
489 |
+
- Review your data before exporting
|
490 |
+
- Start with 5-10 URLs to test
|
491 |
+
""")
|
492 |
+
|
493 |
+
return interface
|
494 |
+
|
495 |
+
# Launch application
|
496 |
+
if __name__ == "__main__":
|
497 |
+
logger.info("π Starting AI Dataset Studio (Simple Version)")
|
498 |
+
|
499 |
+
try:
|
500 |
+
interface = create_simple_interface()
|
501 |
+
logger.info("β
Simple interface created successfully")
|
502 |
+
|
503 |
+
interface.launch(
|
504 |
+
server_name="0.0.0.0",
|
505 |
+
server_port=7860,
|
506 |
+
share=False,
|
507 |
+
show_error=True
|
508 |
+
)
|
509 |
+
|
510 |
+
except Exception as e:
|
511 |
+
logger.error(f"β Failed to launch: {e}")
|
512 |
+
print("\nπ‘ If you see import errors, try installing:")
|
513 |
+
print("pip install gradio pandas requests beautifulsoup4")
|
514 |
+
raise
|