MagicMeWizard's picture
Create utils.py
4fc0c1e verified
"""
Utility functions for AI Dataset Studio
Common helpers for text processing, validation, and data manipulation
"""
import re
import hashlib
import json
import csv
import io
from typing import List, Dict, Any, Optional, Tuple, Union
from urllib.parse import urlparse, urljoin
from datetime import datetime
import logging
logger = logging.getLogger(__name__)
def clean_text(text: str, aggressive: bool = False) -> str:
"""
Clean text content with various strategies
Args:
text: Input text to clean
aggressive: Whether to apply aggressive cleaning
Returns:
Cleaned text
"""
if not text:
return ""
# Basic cleaning
text = text.strip()
# Remove excessive whitespace
text = re.sub(r'\s+', ' ', text)
# Remove URLs if aggressive
if aggressive:
text = re.sub(r'http\S+|www\.\S+', '', text)
text = re.sub(r'\S+@\S+', '', text) # Email addresses
# Fix common encoding issues
text = text.replace('’', "'")
text = text.replace('“', '"')
text = text.replace('â€', '"')
text = text.replace('â€"', '—')
# Remove excessive punctuation
text = re.sub(r'[!?]{3,}', '!!!', text)
text = re.sub(r'\.{4,}', '...', text)
# Clean up quotes and apostrophes
text = re.sub(r'["""]', '"', text)
text = re.sub(r'[''']', "'", text)
return text.strip()
def extract_urls_from_text(text: str) -> List[str]:
"""Extract URLs from text content"""
url_pattern = r'https?://(?:[-\w.])+(?:[:\d]+)?(?:/(?:[\w/_.])*(?:\?(?:[\w&=%.])*)?(?:#(?:[\w.])*)?)?'
urls = re.findall(url_pattern, text)
return list(set(urls)) # Remove duplicates
def validate_url(url: str) -> Tuple[bool, str]:
"""
Validate URL format and basic security checks
Returns:
Tuple of (is_valid, error_message)
"""
try:
if not url or not url.strip():
return False, "Empty URL"
url = url.strip()
# Basic format check
parsed = urlparse(url)
if not parsed.scheme:
return False, "Missing scheme (http:// or https://)"
if parsed.scheme not in ['http', 'https']:
return False, f"Invalid scheme: {parsed.scheme}"
if not parsed.netloc:
return False, "Invalid domain"
# Check for suspicious patterns
suspicious_patterns = [
r'localhost',
r'127\.0\.0\.1',
r'192\.168\.',
r'10\.',
r'172\.(1[6-9]|2[0-9]|3[01])\.'
]
for pattern in suspicious_patterns:
if re.search(pattern, parsed.netloc, re.IGNORECASE):
return False, "Access to internal networks not allowed"
return True, "Valid URL"
except Exception as e:
return False, f"URL validation error: {str(e)}"
def parse_urls_from_file(file_content: bytes, filename: str) -> List[str]:
"""
Parse URLs from uploaded file content
Args:
file_content: File content as bytes
filename: Original filename for format detection
Returns:
List of extracted URLs
"""
try:
# Decode content
try:
content = file_content.decode('utf-8')
except UnicodeDecodeError:
content = file_content.decode('latin-1')
urls = []
# Handle different file formats
if filename.lower().endswith('.csv'):
# Try to parse as CSV
reader = csv.DictReader(io.StringIO(content))
for row in reader:
# Look for URL column (flexible naming)
url_columns = ['url', 'URL', 'link', 'Link', 'href', 'address']
for col in url_columns:
if col in row and row[col]:
urls.append(row[col].strip())
break
else:
# Treat as plain text (one URL per line)
lines = content.split('\n')
for line in lines:
line = line.strip()
if line and not line.startswith('#'): # Skip comments
# Extract URLs from line
extracted = extract_urls_from_text(line)
if extracted:
urls.extend(extracted)
elif validate_url(line)[0]: # Check if line itself is a URL
urls.append(line)
# Remove duplicates while preserving order
seen = set()
unique_urls = []
for url in urls:
if url not in seen:
seen.add(url)
unique_urls.append(url)
return unique_urls
except Exception as e:
logger.error(f"Error parsing URLs from file: {e}")
return []
def calculate_text_similarity(text1: str, text2: str) -> float:
"""
Calculate similarity between two texts using simple methods
Returns:
Similarity score between 0 and 1
"""
if not text1 or not text2:
return 0.0
# Simple character-level similarity
text1 = text1.lower().strip()
text2 = text2.lower().strip()
if text1 == text2:
return 1.0
# Jaccard similarity on words
words1 = set(text1.split())
words2 = set(text2.split())
if not words1 and not words2:
return 1.0
if not words1 or not words2:
return 0.0
intersection = len(words1.intersection(words2))
union = len(words1.union(words2))
return intersection / union if union > 0 else 0.0
def detect_content_type(text: str) -> str:
"""
Detect the type of content based on text analysis
Returns:
Content type string
"""
if not text:
return "empty"
text_lower = text.lower()
# Check for common patterns
if any(word in text_lower for word in ['abstract:', 'introduction:', 'conclusion:', 'references:']):
return "academic"
elif any(word in text_lower for word in ['news', 'reported', 'according to', 'sources say']):
return "news"
elif any(word in text_lower for word in ['review', 'rating', 'stars', 'recommend']):
return "review"
elif any(word in text_lower for word in ['blog', 'posted by', 'share this']):
return "blog"
elif re.search(r'\b\d{1,2}[/-]\d{1,2}[/-]\d{2,4}\b', text):
return "dated_content"
else:
return "general"
def extract_metadata_from_text(text: str) -> Dict[str, Any]:
"""
Extract metadata from text content
Returns:
Dictionary of extracted metadata
"""
metadata = {}
# Extract dates
date_patterns = [
r'\b\d{1,2}[/-]\d{1,2}[/-]\d{2,4}\b',
r'\b\d{4}[/-]\d{1,2}[/-]\d{1,2}\b',
r'\b(?:Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec)[a-z]* \d{1,2},? \d{4}\b'
]
dates = []
for pattern in date_patterns:
dates.extend(re.findall(pattern, text, re.IGNORECASE))
if dates:
metadata['extracted_dates'] = dates[:5] # Limit to first 5
# Extract numbers and statistics
numbers = re.findall(r'\b\d{1,3}(?:,\d{3})*(?:\.\d+)?\b', text)
if numbers:
metadata['numbers'] = numbers[:10] # Limit to first 10
# Extract email addresses
emails = re.findall(r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b', text)
if emails:
metadata['emails'] = emails[:5]
# Extract phone numbers (basic pattern)
phones = re.findall(r'\b\d{3}[-.]?\d{3}[-.]?\d{4}\b', text)
if phones:
metadata['phones'] = phones[:5]
# Extract capitalized words (potential names/entities)
capitalized = re.findall(r'\b[A-Z][a-z]+(?:\s[A-Z][a-z]+)*\b', text)
if capitalized:
# Filter common words
common_words = {'The', 'This', 'That', 'There', 'Then', 'They', 'These', 'Those'}
filtered = [word for word in capitalized if word not in common_words]
metadata['capitalized_terms'] = list(set(filtered))[:20]
return metadata
def generate_content_hash(text: str) -> str:
"""Generate a hash for content deduplication"""
# Normalize text for hashing
normalized = re.sub(r'\s+', ' ', text.lower().strip())
return hashlib.md5(normalized.encode('utf-8')).hexdigest()
def format_file_size(size_bytes: int) -> str:
"""Format file size in human readable format"""
if size_bytes == 0:
return "0 B"
size_names = ["B", "KB", "MB", "GB"]
i = 0
while size_bytes >= 1024 and i < len(size_names) - 1:
size_bytes /= 1024.0
i += 1
return f"{size_bytes:.1f} {size_names[i]}"
def estimate_reading_time(text: str, words_per_minute: int = 200) -> int:
"""Estimate reading time in minutes"""
word_count = len(text.split())
return max(1, round(word_count / words_per_minute))
def truncate_text(text: str, max_length: int, suffix: str = "...") -> str:
"""Truncate text to maximum length with suffix"""
if len(text) <= max_length:
return text
return text[:max_length - len(suffix)] + suffix
def create_filename_safe_string(text: str, max_length: int = 50) -> str:
"""Create a filesystem-safe string from text"""
# Remove/replace problematic characters
safe_text = re.sub(r'[<>:"/\\|?*]', '_', text)
safe_text = re.sub(r'\s+', '_', safe_text)
safe_text = safe_text.strip('._')
# Truncate if too long
if len(safe_text) > max_length:
safe_text = safe_text[:max_length].rstrip('_')
return safe_text or "untitled"
def validate_dataset_format(data: List[Dict[str, Any]], required_fields: List[str]) -> Tuple[bool, List[str]]:
"""
Validate dataset format against required fields
Returns:
Tuple of (is_valid, list_of_errors)
"""
errors = []
if not data:
errors.append("Dataset is empty")
return False, errors
# Check each item
for i, item in enumerate(data[:10]): # Check first 10 items
if not isinstance(item, dict):
errors.append(f"Item {i} is not a dictionary")
continue
# Check required fields
for field in required_fields:
if field not in item:
errors.append(f"Item {i} missing required field: {field}")
elif not item[field]: # Check for empty values
errors.append(f"Item {i} has empty value for field: {field}")
return len(errors) == 0, errors
def create_progress_message(current: int, total: int, operation: str = "Processing") -> str:
"""Create a formatted progress message"""
percentage = (current / total * 100) if total > 0 else 0
return f"{operation} {current}/{total} ({percentage:.1f}%)"
def sanitize_text_for_json(text: str) -> str:
"""Sanitize text for safe JSON serialization"""
if not text:
return ""
# Replace problematic characters
text = text.replace('\x00', '') # Remove null bytes
text = re.sub(r'[\x00-\x1f\x7f-\x9f]', ' ', text) # Remove control characters
return text
def extract_domain_from_url(url: str) -> str:
"""Extract domain from URL"""
try:
parsed = urlparse(url)
return parsed.netloc.lower()
except:
return "unknown"
def analyze_text_quality(text: str) -> Dict[str, Any]:
"""
Analyze text quality and return metrics
Returns:
Dictionary with quality metrics
"""
if not text:
return {'score': 0.0, 'issues': ['Empty text']}
issues = []
score = 1.0
# Length checks
word_count = len(text.split())
if word_count < 10:
issues.append('Too short (< 10 words)')
score -= 0.3
elif word_count < 50:
score -= 0.1
# Character checks
if len(text) < 100:
issues.append('Very short content')
score -= 0.2
# Language quality checks
uppercase_ratio = sum(1 for c in text if c.isupper()) / len(text)
if uppercase_ratio > 0.3:
issues.append('Excessive uppercase')
score -= 0.2
# Punctuation checks
sentence_endings = text.count('.') + text.count('!') + text.count('?')
if word_count > 50 and sentence_endings < 2:
issues.append('Few sentence endings')
score -= 0.1
# Excessive repetition check
words = text.lower().split()
if len(words) > 10:
unique_words = set(words)
if len(unique_words) / len(words) < 0.5:
issues.append('High word repetition')
score -= 0.2
# Special character checks
special_char_ratio = sum(1 for c in text if not c.isalnum() and not c.isspace()) / len(text)
if special_char_ratio > 0.1:
issues.append('Many special characters')
score -= 0.1
return {
'score': max(0.0, score),
'word_count': word_count,
'char_count': len(text),
'uppercase_ratio': uppercase_ratio,
'special_char_ratio': special_char_ratio,
'issues': issues
}
# Dataset template utilities
def create_classification_example(text: str, label: str, confidence: float = 1.0) -> Dict[str, Any]:
"""Create a text classification example"""
return {
'text': text,
'label': label,
'confidence': confidence
}
def create_ner_example(text: str, entities: List[Dict[str, Any]]) -> Dict[str, Any]:
"""Create a named entity recognition example"""
return {
'text': text,
'entities': entities
}
def create_qa_example(context: str, question: str, answer: str, answer_start: int = None) -> Dict[str, Any]:
"""Create a question answering example"""
example = {
'context': context,
'question': question,
'answer': answer
}
if answer_start is not None:
example['answer_start'] = answer_start
return example
def create_summarization_example(text: str, summary: str) -> Dict[str, Any]:
"""Create a text summarization example"""
return {
'text': text,
'summary': summary
}