Mahiruoshi
commited on
Commit
·
612b65a
1
Parent(s):
b522165
Update app.py
Browse files
app.py
CHANGED
@@ -22,7 +22,7 @@ class VitsGradio:
|
|
22 |
def __init__(self):
|
23 |
self.dev = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
24 |
self.lan = ["中文","日文","自动","手动"]
|
25 |
-
self.idols = ["
|
26 |
self.modelPaths = []
|
27 |
for root,dirs,files in os.walk("checkpoints"):
|
28 |
for dir in dirs:
|
@@ -31,9 +31,9 @@ class VitsGradio:
|
|
31 |
gr.Markdown(
|
32 |
"## <center> Lovelive虹团中日双语VITS\n"
|
33 |
"### <center> 请不要生成会对个人以及企划造成侵害的内容\n"
|
34 |
-
"<div align='center'
|
35 |
-
'<div align="center"><a
|
36 |
-
'<div align="center"><a
|
37 |
with gr.Tab("TTS合成"):
|
38 |
with gr.Row():
|
39 |
with gr.Column():
|
@@ -168,15 +168,15 @@ class VitsGradio:
|
|
168 |
spk = 12
|
169 |
return spk
|
170 |
|
171 |
-
elif speaker == "
|
172 |
spk = 16
|
173 |
return spk
|
174 |
|
175 |
-
elif speaker == "
|
176 |
spk = 18
|
177 |
return spk
|
178 |
|
179 |
-
elif speaker == "
|
180 |
spk = 19
|
181 |
return spk
|
182 |
|
|
|
22 |
def __init__(self):
|
23 |
self.dev = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
24 |
self.lan = ["中文","日文","自动","手动"]
|
25 |
+
self.idols = ["chinese1","chinese2","chinese3","高咲侑","歩夢","かすみ","しずく","果林","愛","彼方","せつ菜","璃奈","栞子","エマ","ランジュ","ミア","華恋","まひる","なな","クロディーヌ","ひかり",'純那',"香子","真矢","双葉","ミチル","メイファン","やちよ","晶","いちえ","ゆゆ子","塁","珠緒","あるる","ララフィン","美空","静羽","あるる"]
|
26 |
self.modelPaths = []
|
27 |
for root,dirs,files in os.walk("checkpoints"):
|
28 |
for dir in dirs:
|
|
|
31 |
gr.Markdown(
|
32 |
"## <center> Lovelive虹团中日双语VITS\n"
|
33 |
"### <center> 请不要生成会对个人以及企划造成侵害的内容\n"
|
34 |
+
"<div align='center'>目前有虹团标贝普通话版(biaobei),虹团模型(default),少歌模型(ShojoKageki)以及混合模型(tmp)</div>"
|
35 |
+
'<div align="center"><a>参数说明:默认参数适合汉语普通话,合成日语时建议将噪声比例调节至0.667,噪声偏差对应着每个字之间的间隔,对普通话影响较大,duration代表整体语速</div>'
|
36 |
+
'<div align="center"><a>合成前请先选择模型,建议选择tmp模型,否则第一次合成不一定成功。长段落/小说合成建议colab或本地运行</div>')
|
37 |
with gr.Tab("TTS合成"):
|
38 |
with gr.Row():
|
39 |
with gr.Column():
|
|
|
168 |
spk = 12
|
169 |
return spk
|
170 |
|
171 |
+
elif speaker == "chinese1":
|
172 |
spk = 16
|
173 |
return spk
|
174 |
|
175 |
+
elif speaker == "chinese2":
|
176 |
spk = 18
|
177 |
return spk
|
178 |
|
179 |
+
elif speaker == "chinese3":
|
180 |
spk = 19
|
181 |
return spk
|
182 |
|