File size: 8,977 Bytes
332dcef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import json
import re
import numpy as np
import IPython.display as ipd
import torch
import commons
import utils
from models import SynthesizerTrn
from text.symbols import symbols
from text import text_to_sequence
import gradio as gr
import time
import json
import datetime
import os
import pickle
from scipy.io.wavfile import write
import librosa
import romajitable
from mel_processing import spectrogram_torch
import soundfile as sf
from scipy import signal
class VitsGradio:
    def __init__(self):
        self.lan = ["中文","日文","自动"]
        self.modelPaths = []
        for root,dirs,files in os.walk("checkpoints"):
            for dir in dirs:
                self.modelPaths.append(dir)
        with gr.Blocks() as self.Vits:
            with gr.Tab("小说合成"):
                with gr.Row():
                    with gr.Column():
                        with gr.Row():
                            with gr.Column():
                                self.Text = gr.File(label="Text")
                                self.audio_path = gr.TextArea(label="音频路径",lines=1,value = 'audiobook/chapter.wav')
                                btnbook = gr.Button("小说合成")
                                btnbook.click(self.tts_fn, inputs=[self.Text,self.audio_path])
            with gr.Tab("TTS设定"):
                with gr.Row():
                    with gr.Column():
                        with gr.Row():
                            with gr.Column():
                                self.input1 = gr.Dropdown(label = "模型", choices = self.modelPaths, value = self.modelPaths[0], type = "value")
                                self.input2 = gr.Dropdown(label="Language", choices=self.lan, value="自动", interactive=True)                                
                                self.input3 = gr.Dropdown(label="Speaker", choices=list(range(1001)), value=0, interactive=True)
                                self.input4 = gr.Slider(minimum=0, maximum=1.0, label="更改噪声比例(noise scale),以控制情感", value=0.6)
                                self.input5 = gr.Slider(minimum=0, maximum=1.0, label="更改噪声偏差(noise scale w),以控制音素长短", value=0.667)
                                self.input6 = gr.Slider(minimum=0.1, maximum=10, label="duration", value=1)
                                statusa = gr.TextArea()
                                btnVC = gr.Button("完成vits TTS端设定")
                btnVC.click(self.create_tts_fn, inputs=[self.input1, self.input2, self.input3, self.input4, self.input5, self.input6], outputs = [statusa])
    
    def is_japanese(self,string):
        for ch in string:
            if ord(ch) > 0x3040 and ord(ch) < 0x30FF:
                return True
        return False
    
    def is_english(self,string):
        import re
        pattern = re.compile('^[A-Za-z0-9.,:;!?()_*"\' ]+$')
        if pattern.fullmatch(string):
            return True
        else:
            return False
    
    def get_text(self,text, hps, cleaned=False):
        if cleaned:
            text_norm = text_to_sequence(text, self.hps_ms.symbols, [])
        else:
            text_norm = text_to_sequence(text, self.hps_ms.symbols, self.hps_ms.data.text_cleaners)
        if self.hps_ms.data.add_blank:
            text_norm = commons.intersperse(text_norm, 0)
        text_norm = torch.LongTensor(text_norm)
        return text_norm

    def get_label(self,text, label):
        if f'[{label}]' in text:
            return True, text.replace(f'[{label}]', '')
        else:
            return False, text

    def sle(self,language,text):
        text = text.replace('\n','。').replace(' ',',')
        if language == "中文":
            tts_input1 = "[ZH]" + text + "[ZH]"
            return tts_input1
        elif language == "自动":
            tts_input1 = f"[JA]{text}[JA]" if self.is_japanese(text) else f"[ZH]{text}[ZH]"
            return tts_input1
        elif language == "日文":
            tts_input1 = "[JA]" + text + "[JA]"
            return tts_input1

    def create_tts_fn(self,path, input2, input3, n_scale= 0.667,n_scale_w = 0.8, l_scale = 1 ):
        self.language = input2
        self.speaker_id = int(input3)
        self.n_scale = n_scale
        self.n_scale_w = n_scale_w
        self.l_scale = l_scale
        self.dev = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
        self.hps_ms = utils.get_hparams_from_file(f"checkpoints/{path}/config.json")
        self.n_speakers = self.hps_ms.data.n_speakers if 'n_speakers' in self.hps_ms.data.keys() else 0
        self.n_symbols = len(self.hps_ms.symbols) if 'symbols' in self.hps_ms.keys() else 0
        self.net_g_ms = SynthesizerTrn(
            self.n_symbols,
            self.hps_ms.data.filter_length // 2 + 1,
            self.hps_ms.train.segment_size // self.hps_ms.data.hop_length,
            n_speakers=self.n_speakers,
            **self.hps_ms.model).to(self.dev)
        _ = self.net_g_ms.eval()
        _ = utils.load_checkpoint(f"checkpoints/{path}/model.pth", self.net_g_ms)
        return 'success'

    def transfer(self,text):
        text = re.sub("<[^>]*>","",text)
        result_list = re.split(r'\n', text)
        final_list = []
        for j in result_list:
            result_list2 = re.split(r'。|!|——|:|;|……|——|。|!', j)
            for i in result_list2:
                if self.is_english(i):
                    i = romajitable.to_kana(i).katakana
                for m in range(20):
                    i = i.replace('\n','').replace(' ','').replace('……','。').replace('…','。').replace('还','孩').replace('“','').replace('”','').replace('!','。').replace('」','').replace('「','')
            #Current length of single sentence: 50 
                if len(i)>1:
                    if len(i) > 50:
                        try:
                            cur_list = re.split(r'。|!|——|,|:', i)
                            for i in cur_list:
                                if len(i)>1:
                                    final_list.append(i+'。')
                        except:
                            pass
                    else:
                        final_list.append(i)
        final_list = [x for x in final_list if x != '']
        return final_list

    def tts_fn(self,text,audio_path):
        with open(text.name, "r", encoding="utf-8") as f:
            text = f.read()
        a = ['【','[','(','(','〔']
        b = ['】',']',')',')','〕']
        for i in a:
            text = text.replace(i,'<')
        for i in b:
            text = text.replace(i,'>')
        final_list = self.transfer(text)
        split_list = []
        while len(final_list) > 0:
            split_list.append(final_list[:1000])
            final_list = final_list[1000:]
        c0 = 0
        for lists in split_list:
            audio_fin = []
            t = datetime.timedelta(seconds=0)
            c = 0
            f1 = open(audio_path.replace('.wav',str(c0)+".srt"),'w',encoding='utf-8')
            for sentence in lists:
                try:
                    c +=1
                    with torch.no_grad():
                        stn_tst = self.get_text(self.sle(self.language,sentence), self.hps_ms, cleaned=False)
                        x_tst = stn_tst.unsqueeze(0).to(self.dev)
                        x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(self.dev)
                        sid = torch.LongTensor([self.speaker_id]).to(self.dev)
                        t1 = time.time()
                        audio = self.net_g_ms.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=self.n_scale, noise_scale_w=self.n_scale_w, length_scale=self.l_scale)[0][
                            0, 0].data.cpu().float().numpy()
                        t2 = time.time()
                        spending_time = "第"+str(c)+"句的推理时间为:"+str(t2-t1)+"s"
                        print(spending_time)
                        time_start = str(t).split(".")[0] + "," + str(t.microseconds)[:3]
                        last_time = datetime.timedelta(seconds=len(audio)/float(22050))
                        t+=last_time
                        time_end = str(t).split(".")[0] + "," + str(t.microseconds)[:3]
                        print(time_end)
                        f1.write(str(c-1)+'\n'+time_start+' --> '+time_end+'\n'+sentence.replace('。','')+'\n\n')
                    resampled_audio_data = signal.resample(audio, len(audio) * 2)
                    audio_fin.append(resampled_audio_data)
                except:
                    pass
            sf.write(audio_path.replace('.wav',str(c0)+'.wav'), np.concatenate(audio_fin), 44100, 'PCM_24')
            c0 += 1
        file_path = audio_path.replace('.wav',str(c0)+".srt")

if __name__ == '__main__':
    print("开始部署")
    grVits = VitsGradio()
    grVits.Vits.launch()