File size: 5,802 Bytes
134a749
 
d308227
134a749
 
 
 
 
 
 
 
d308227
134a749
 
 
 
 
 
 
d308227
134a749
 
 
 
 
 
 
d308227
 
 
134a749
 
 
d308227
 
134a749
 
d308227
134a749
 
 
d308227
134a749
 
d308227
134a749
d308227
134a749
d308227
134a749
 
 
 
 
 
 
d308227
134a749
 
 
 
d308227
134a749
 
 
d308227
134a749
d308227
 
134a749
d308227
 
134a749
d308227
134a749
d308227
134a749
 
 
 
 
 
d308227
134a749
d308227
134a749
d308227
134a749
 
 
 
 
 
d308227
134a749
d308227
134a749
 
 
d308227
 
134a749
 
d308227
 
134a749
 
 
 
d308227
134a749
d308227
 
 
 
 
 
 
 
 
134a749
 
 
 
 
d308227
 
134a749
d308227
134a749
 
d308227
 
 
 
 
 
 
 
134a749
d308227
 
134a749
 
d308227
 
 
134a749
 
d308227
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import os

# External libraries
import torch
from accelerate import Accelerator
from accelerate.logging import get_logger
from diffusers import AutoencoderKL, DDIMScheduler
from diffusers.utils import check_min_version
from diffusers.utils.import_utils import is_xformers_available
from transformers import CLIPTextModel, CLIPTokenizer

# Custom imports
from src.datasets.dresscode import DressCodeDataset
from src.datasets.vitonhd import VitonHDDataset
from src.mgd_pipelines.mgd_pipe import MGDPipe
from src.mgd_pipelines.mgd_pipe_disentangled import MGDPipeDisentangled
from src.utils.image_from_pipe import generate_images_from_mgd_pipe
from src.utils.set_seeds import set_seed

# Ensure the minimum version of diffusers is installed
check_min_version("0.10.0.dev0")

logger = get_logger(__name__, log_level="INFO")
os.environ["TOKENIZERS_PARALLELISM"] = "true"
os.environ["WANDB_START_METHOD"] = "thread"


def main(args):
    # Initialize Accelerator
    accelerator = Accelerator(mixed_precision=args.get("mixed_precision", "fp16"))
    device = accelerator.device

    # Set the training seed
    if args.get("seed") is not None:
        set_seed(args["seed"])

    # Load scheduler, tokenizer, and models
    val_scheduler = DDIMScheduler.from_pretrained(args["pretrained_model_name_or_path"], subfolder="scheduler")
    val_scheduler.set_timesteps(50, device=device)

    tokenizer = CLIPTokenizer.from_pretrained(
        args["pretrained_model_name_or_path"], subfolder="tokenizer", revision=args.get("revision", None)
    )
    text_encoder = CLIPTextModel.from_pretrained(
        args["pretrained_model_name_or_path"], subfolder="text_encoder", revision=args.get("revision", None)
    )
    vae = AutoencoderKL.from_pretrained(args["pretrained_model_name_or_path"], subfolder="vae", revision=args.get("revision", None))

    # Load UNet
    unet = torch.hub.load(
        repo_or_dir="aimagelab/multimodal-garment-designer",
        source="github",
        model="mgd",
        pretrained=True,
    )

    # Freeze models
    vae.requires_grad_(False)
    text_encoder.requires_grad_(False)

    # Enable memory efficient attention if requested
    if args.get("enable_xformers_memory_efficient_attention", False):
        if is_xformers_available():
            unet.enable_xformers_memory_efficient_attention()
        else:
            raise ValueError("xformers is not available. Install it to enable memory-efficient attention.")

    # Set dataset category
    category = [args.get("category", "dresses")]

    # Load dataset
    if args["dataset"] == "dresscode":
        test_dataset = DressCodeDataset(
            dataroot_path=args["dataset_path"],
            phase="test",
            order=args.get("test_order", 0),
            radius=5,
            sketch_threshold_range=(20, 20),
            tokenizer=tokenizer,
            category=category,
            size=(512, 384),
        )
    elif args["dataset"] == "vitonhd":
        test_dataset = VitonHDDataset(
            dataroot_path=args["dataset_path"],
            phase="test",
            order=args.get("test_order", 0),
            sketch_threshold_range=(20, 20),
            radius=5,
            tokenizer=tokenizer,
            size=(512, 384),
        )
    else:
        raise NotImplementedError(f"Dataset {args['dataset']} is not supported.")

    # Prepare dataloader
    test_dataloader = torch.utils.data.DataLoader(
        test_dataset,
        shuffle=False,
        batch_size=args.get("batch_size", 1),
        num_workers=args.get("num_workers_test", 4),
    )

    # Cast models to appropriate precision
    weight_dtype = torch.float32 if args.get("mixed_precision") != "fp16" else torch.float16
    text_encoder.to(device, dtype=weight_dtype)
    vae.to(device, dtype=weight_dtype)
    unet.eval()

    # Select pipeline
    with torch.inference_mode():
        pipeline_class = MGDPipeDisentangled if args.get("disentagle", False) else MGDPipe
        val_pipe = pipeline_class(
            text_encoder=text_encoder,
            vae=vae,
            unet=unet.to(vae.dtype),
            tokenizer=tokenizer,
            scheduler=val_scheduler,
        ).to(device)

        val_pipe.enable_attention_slicing()

        # Prepare dataloader with accelerator
        test_dataloader = accelerator.prepare(test_dataloader)

        # Generate images
        output_path = os.path.join(args["output_dir"], args.get("save_name", "generated_image.png"))
        generate_images_from_mgd_pipe(
            test_order=args.get("test_order", 0),
            pipe=val_pipe,
            test_dataloader=test_dataloader,
            save_name=args.get("save_name", "generated_image"),
            dataset=args["dataset"],
            output_dir=args["output_dir"],
            guidance_scale=args.get("guidance_scale", 7.5),
            guidance_scale_pose=args.get("guidance_scale_pose", 0.5),
            guidance_scale_sketch=args.get("guidance_scale_sketch", 7.5),
            sketch_cond_rate=args.get("sketch_cond_rate", 1.0),
            start_cond_rate=args.get("start_cond_rate", 0.0),
            no_pose=False,
            disentagle=args.get("disentagle", False),
            seed=args.get("seed", None),
        )

    # Return the output image path for verification
    return output_path


if __name__ == "__main__":
    # Example usage for debugging
    example_args = {
        "pretrained_model_name_or_path": "./models",
        "dataset": "dresscode",
        "dataset_path": "./datasets/dresscode",
        "output_dir": "./outputs",
        "guidance_scale": 7.5,
        "guidance_scale_sketch": 7.5,
        "mixed_precision": "fp16",
        "batch_size": 1,
        "seed": 42,
    }
    output_image = main(example_args)
    print(f"Image generated at: {output_image}")