Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,97 +1,67 @@
|
|
1 |
-
import os
|
2 |
-
import numpy as np # Corrected import
|
3 |
-
import torch
|
4 |
import streamlit as st
|
|
|
5 |
from PIL import Image
|
6 |
-
from
|
7 |
from diffusers import DDIMScheduler, AutoencoderKL
|
8 |
from transformers import CLIPTextModel, CLIPTokenizer
|
9 |
-
from src.mgd_pipelines.
|
10 |
-
from src.utils.set_seeds import set_seed
|
11 |
-
from src.utils.image_from_pipe import generate_images_from_mgd_pipe
|
12 |
-
from src.datasets.dresscode import DressCodeDataset
|
13 |
-
|
14 |
-
# Set environment variables
|
15 |
-
os.environ["TOKENIZERS_PARALLELISM"] = "true"
|
16 |
-
os.environ["WANDB_START_METHOD"] = "thread"
|
17 |
|
18 |
-
#
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
tokenizer = CLIPTokenizer.from_pretrained("microsoft/xclip-base-patch32", subfolder="tokenizer")
|
25 |
text_encoder = CLIPTextModel.from_pretrained("microsoft/xclip-base-patch32", subfolder="text_encoder")
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
unet = torch.hub.load("aimagelab/multimodal-garment-designer", "mgd", pretrained=True)
|
30 |
-
|
31 |
-
vae.requires_grad_(False)
|
32 |
-
text_encoder.requires_grad_(False)
|
33 |
-
|
34 |
-
if seed is not None:
|
35 |
-
set_seed(seed)
|
36 |
|
37 |
-
|
38 |
-
test_dataset = DressCodeDataset(
|
39 |
-
dataroot_path="assets\data\dresscode", # Replace with actual dataset path
|
40 |
-
phase="test",
|
41 |
-
category=category,
|
42 |
-
size=(512, 384),
|
43 |
-
)
|
44 |
-
|
45 |
-
test_dataloader = torch.utils.data.DataLoader(test_dataset, batch_size=1, shuffle=False)
|
46 |
-
|
47 |
-
text_encoder.to(device)
|
48 |
-
vae.to(device)
|
49 |
-
unet.to(device).eval()
|
50 |
-
|
51 |
-
if sketch_image is not None:
|
52 |
-
sketch_tensor = (
|
53 |
-
torch.tensor(np.array(sketch_image)).permute(2, 0, 1).unsqueeze(0).float().to(device) / 255.0
|
54 |
-
)
|
55 |
-
|
56 |
-
val_pipe = MGDPipeDisentangled(
|
57 |
text_encoder=text_encoder,
|
58 |
vae=vae,
|
59 |
-
unet=unet,
|
60 |
tokenizer=tokenizer,
|
61 |
-
scheduler=
|
62 |
).to(device)
|
|
|
63 |
|
64 |
-
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
return
|
76 |
|
77 |
# Streamlit UI
|
78 |
-
st.title("
|
79 |
-
st.write("Generate
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import torch
|
3 |
from PIL import Image
|
4 |
+
from io import BytesIO
|
5 |
from diffusers import DDIMScheduler, AutoencoderKL
|
6 |
from transformers import CLIPTextModel, CLIPTokenizer
|
7 |
+
from src.mgd_pipelines.mgd_pipe import MGDPipe
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
# Initialize the model and other components
|
10 |
+
@st.cache_resource
|
11 |
+
def load_model():
|
12 |
+
# Define your model loading logic
|
13 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
+
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", subfolder="vae")
|
15 |
tokenizer = CLIPTokenizer.from_pretrained("microsoft/xclip-base-patch32", subfolder="tokenizer")
|
16 |
text_encoder = CLIPTextModel.from_pretrained("microsoft/xclip-base-patch32", subfolder="text_encoder")
|
17 |
+
unet = torch.hub.load("aimagelab/multimodal-garment-designer", model="mgd", pretrained=True)
|
18 |
+
scheduler = DDIMScheduler.from_pretrained("stabilityai/sd-scheduler", subfolder="scheduler")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
pipe = MGDPipe(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
text_encoder=text_encoder,
|
22 |
vae=vae,
|
23 |
+
unet=unet.to(vae.dtype),
|
24 |
tokenizer=tokenizer,
|
25 |
+
scheduler=scheduler,
|
26 |
).to(device)
|
27 |
+
return pipe
|
28 |
|
29 |
+
pipe = load_model()
|
30 |
|
31 |
+
def generate_images(pipe, text_input=None, sketch=None):
|
32 |
+
# Generate images from text or sketch or both
|
33 |
+
images = []
|
34 |
+
if text_input:
|
35 |
+
prompt = [text_input]
|
36 |
+
images.extend(pipe(prompt=prompt))
|
37 |
+
if sketch:
|
38 |
+
sketch_image = Image.open(sketch).convert("RGB")
|
39 |
+
images.extend(pipe(sketch=sketch_image))
|
40 |
+
return images
|
41 |
|
42 |
# Streamlit UI
|
43 |
+
st.title("Sketch & Text-based Image Generation")
|
44 |
+
st.write("Generate images based on rough sketches, text input, or both.")
|
45 |
+
|
46 |
+
option = st.radio("Select Input Type", ("Sketch", "Text", "Both"))
|
47 |
+
|
48 |
+
if option in ["Sketch", "Both"]:
|
49 |
+
sketch_file = st.file_uploader("Upload a Sketch", type=["png", "jpg", "jpeg"])
|
50 |
+
|
51 |
+
if option in ["Text", "Both"]:
|
52 |
+
text_input = st.text_input("Enter Text Prompt", placeholder="Describe the image you want to generate")
|
53 |
+
|
54 |
+
if st.button("Generate"):
|
55 |
+
if option == "Sketch" and not sketch_file:
|
56 |
+
st.error("Please upload a sketch.")
|
57 |
+
elif option == "Text" and not text_input:
|
58 |
+
st.error("Please provide text input.")
|
59 |
+
else:
|
60 |
+
# Generate images based on user input
|
61 |
+
with st.spinner("Generating images..."):
|
62 |
+
sketches = BytesIO(sketch_file.read()) if sketch_file else None
|
63 |
+
images = generate_images(pipe, text_input=text_input, sketch=sketches)
|
64 |
+
|
65 |
+
# Display results
|
66 |
+
for i, img in enumerate(images):
|
67 |
+
st.image(img, caption=f"Generated Image {i+1}")
|