File size: 5,113 Bytes
8a529be
 
 
 
8da95b6
444d1cb
 
 
 
 
 
8da95b6
444d1cb
 
 
 
 
 
 
 
8a529be
444d1cb
 
 
 
8da95b6
444d1cb
 
8da95b6
444d1cb
 
 
8da95b6
 
444d1cb
 
 
8da95b6
444d1cb
 
 
 
 
 
 
 
8d5df47
8da95b6
 
8d5df47
 
8da95b6
 
8d5df47
 
8da95b6
 
8d5df47
 
 
8da95b6
8d5df47
 
 
 
 
8da95b6
8d5df47
 
 
 
 
8da95b6
8d5df47
 
8da95b6
 
8d5df47
8da95b6
8d5df47
 
 
 
 
 
b6b9c26
71a7f13
e0c93c6
b6b9c26
 
 
71a7f13
 
 
a8878d7
b6b9c26
a8878d7
 
 
71b8cde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6b9c26
8da95b6
 
444d1cb
8a529be
444d1cb
 
b6b9c26
 
444d1cb
 
5b32090
444d1cb
5b32090
444d1cb
8da95b6
444d1cb
 
 
b6b9c26
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import gradio as gr
import ctranslate2
from transformers import AutoTokenizer
from huggingface_hub import snapshot_download
from codeexecutor import postprocess_completion, get_majority_vote

# Define the model and tokenizer loading
model_prompt = "Solve the following mathematical problem: "
tokenizer = AutoTokenizer.from_pretrained("AI-MO/NuminaMath-7B-TIR")
model_path = snapshot_download(repo_id="Makima57/deepseek-math-Numina")
generator = ctranslate2.Generator(model_path, device="cpu", compute_type="int8")
iterations = 10

# Function to generate predictions using the model
def get_prediction(question):
    input_text = model_prompt + question
    input_tokens = tokenizer.tokenize(input_text)
    results = generator.generate_batch([input_tokens])
    output_tokens = results[0].sequences[0]
    predicted_answer = tokenizer.convert_tokens_to_string(output_tokens)
    return predicted_answer

# Function to perform majority voting across multiple predictions
def majority_vote(question, num_iterations=10):
    all_predictions = []
    all_answer = []
    for _ in range(num_iterations):
        prediction = get_prediction(question)
        answer = postprocess_completion(prediction, True, True)
        all_predictions.append(prediction)
        all_answer.append(answer)
    majority_voted_pred = max(set(all_predictions), key=all_predictions.count)
    majority_voted_ans = get_majority_vote(all_answer)
    return majority_voted_pred, all_predictions, majority_voted_ans

# Gradio interface for user input and output
def gradio_interface(question, correct_answer):
    final_prediction, all_predictions, final_answer = majority_vote(question, iterations)
    return {
        "Question": question,
        "Generated Answers (10 iterations)": all_predictions,
        "Majority-Voted Prediction": final_prediction,
        "Correct solution": correct_answer,
        "Majority answer": final_answer
    }

# Custom CSS for enhanced design
custom_css = """
    body {
        background-color: #fafafa;
        font-family: 'Open Sans', sans-serif;
    }
    .gradio-container {
        background-color: #ffffff;
        border: 3px solid #007acc;
        border-radius: 15px;
        padding: 20px;
        box-shadow: 0 8px 20px rgba(0, 0, 0, 0.15);
        max-width: 800px;
        margin: 50px auto;
    }
    h1 {
        font-family: 'Poppins', sans-serif;
        color: #007acc;
        font-weight: bold;
        font-size: 32px;
        text-align: center;
        margin-bottom: 20px;
    }
    p {
        font-family: 'Roboto', sans-serif;
        font-size: 18px;
        color: #333;
        text-align: center;
        margin-bottom: 15px;
    }
    input, textarea {
        font-family: 'Montserrat', sans-serif;
        font-size: 16px;
        padding: 10px;
        border: 2px solid #007acc;
        border-radius: 10px;
        background-color: #f1f8ff;
        margin-bottom: 15px;
    }
    #math_question, #correct_answer {
        font-size: 20px;
        font-family: 'Poppins', sans-serif;
        font-weight: 500px;  /* Apply bold */
        
        
        color: #007acc;
        margin-bottom: 5px;
        display: inline-block;
    }
    
    textarea {
        min-height: 150px;
    }
    .gr-button-primary {
        background-color: #007acc !important;
        color: white !important;
        border-radius: 10px !important;
        font-size: 18px !important;
        font-weight: bold !important;
        padding: 10px 20px !important;
        font-family: 'Montserrat', sans-serif !important;
        transition: background-color 0.3s ease !important;
    }
    .gr-button-primary:hover {
        background-color: #005f99 !important;
    }
    .gr-button-secondary {
        background-color: #f44336 !important;
        color: white !important;
        border-radius: 10px !important;
        font-size: 18px !important;
        font-weight: bold !important;
        padding: 10px 20px !important;
        font-family: 'Montserrat', sans-serif !important;
        transition: background-color 0.3s ease !important;
    }
    .gr-button-secondary:hover {
        background-color: #c62828 !important;
    }
    .gr-output {
        background-color: #e0f7fa;
        border: 2px solid #007acc;
        border-radius: 10px;
        padding: 15px;
        font-size: 16px;
        font-family: 'Roboto', sans-serif;
        font-weight: bold;
        color: #00796b;
    }
     
"""

# Gradio app setup
interface = gr.Interface(
    fn=gradio_interface,
    inputs=[
        gr.Textbox(label="🧠 Math Question", placeholder="Enter your math question here...", elem_id="math_question"),
        gr.Textbox(label="βœ… Correct Answer", placeholder="Enter the correct answer here...", elem_id="correct_answer"),
    ],
    outputs=[
        gr.JSON(label="πŸ“Š Results"),  # Display the results in a JSON format
    ],
    title="πŸ”’ Math Question Solver",
    description="Enter a math question to get the model prediction and see all generated answers.",
    css=custom_css  # Apply custom CSS
)

if __name__ == "__main__":
    interface.launch()