File size: 5,452 Bytes
8a529be
 
 
 
cc60cf1
444d1cb
 
 
 
 
 
8da95b6
444d1cb
 
 
 
 
 
 
 
8a529be
444d1cb
 
 
 
8da95b6
444d1cb
 
8da95b6
444d1cb
 
 
8da95b6
cc60cf1
 
 
 
 
 
 
444d1cb
 
 
cc60cf1
 
444d1cb
 
 
cc60cf1
 
 
444d1cb
 
cc60cf1
8da95b6
 
8d5df47
 
8da95b6
 
8d5df47
 
8da95b6
 
8d5df47
 
 
8da95b6
8d5df47
 
 
 
 
8da95b6
8d5df47
 
 
 
 
8da95b6
8d5df47
 
8da95b6
 
8d5df47
8da95b6
8d5df47
 
 
 
 
 
b6b9c26
71a7f13
e0c93c6
cc60cf1
71a7f13
 
 
a8878d7
b6b9c26
a8878d7
 
 
71b8cde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8da95b6
 
444d1cb
8a529be
444d1cb
 
b6b9c26
 
444d1cb
 
5b32090
444d1cb
5b32090
cc60cf1
8da95b6
444d1cb
 
 
cc60cf1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import gradio as gr
import ctranslate2
from transformers import AutoTokenizer
from huggingface_hub import snapshot_download
from codeexecutor import postprocess_completion, get_majority_vote, get_solution_steps

# Define the model and tokenizer loading
model_prompt = "Solve the following mathematical problem: "
tokenizer = AutoTokenizer.from_pretrained("AI-MO/NuminaMath-7B-TIR")
model_path = snapshot_download(repo_id="Makima57/deepseek-math-Numina")
generator = ctranslate2.Generator(model_path, device="cpu", compute_type="int8")
iterations = 10

# Function to generate predictions using the model
def get_prediction(question):
    input_text = model_prompt + question
    input_tokens = tokenizer.tokenize(input_text)
    results = generator.generate_batch([input_tokens])
    output_tokens = results[0].sequences[0]
    predicted_answer = tokenizer.convert_tokens_to_string(output_tokens)
    return predicted_answer

# Function to perform majority voting across multiple predictions
def majority_vote(question, num_iterations=10):
    all_predictions = []
    all_answer = []
    for _ in range(num_iterations):
        prediction = get_prediction(question)
        answer = postprocess_completion(prediction, True, True)
        all_predictions.append(prediction)
        all_answer.append(answer)
    majority_voted_pred = max(set(all_predictions), key=all_predictions.count)
    majority_voted_ans = get_majority_vote(all_answer)
    return majority_voted_pred, majority_voted_ans

# Function to get steps for solving the problem
def get_solution_steps(question):
    # Assuming 'get_solution_steps' is a function that provides steps for solving the problem
    steps = get_solution_steps(question)  # You need to implement this function based on how steps are generated
    return steps

# Gradio interface for user input and output
def gradio_interface(question, correct_answer):
    final_prediction, final_answer = majority_vote(question, iterations)
    solution_steps = get_solution_steps(question)  # Fetch the steps to solve the problem
    return {
        "Question": question,
        "Majority-Voted Prediction": final_prediction,
        "Correct Solution": correct_answer,
        "Majority Answer": final_answer,
        "Solution Steps": solution_steps
    }

# Custom CSS for enhanced design (unchanged)
custom_css = """
    body {
        background-color: #fafafa;
        font-family: 'Open Sans', sans-serif;
    }
    .gradio-container {
        background-color: #ffffff;
        border: 3px solid #007acc;
        border-radius: 15px;
        padding: 20px;
        box-shadow: 0 8px 20px rgba(0, 0, 0, 0.15);
        max-width: 800px;
        margin: 50px auto;
    }
    h1 {
        font-family: 'Poppins', sans-serif;
        color: #007acc;
        font-weight: bold;
        font-size: 32px;
        text-align: center;
        margin-bottom: 20px;
    }
    p {
        font-family: 'Roboto', sans-serif;
        font-size: 18px;
        color: #333;
        text-align: center;
        margin-bottom: 15px;
    }
    input, textarea {
        font-family: 'Montserrat', sans-serif;
        font-size: 16px;
        padding: 10px;
        border: 2px solid #007acc;
        border-radius: 10px;
        background-color: #f1f8ff;
        margin-bottom: 15px;
    }
    #math_question, #correct_answer {
        font-size: 20px;
        font-family: 'Poppins', sans-serif;
        font-weight: 500px;
        color: #007acc;
        margin-bottom: 5px;
        display: inline-block;
    }
    
    textarea {
        min-height: 150px;
    }
    .gr-button-primary {
        background-color: #007acc !important;
        color: white !important;
        border-radius: 10px !important;
        font-size: 18px !important;
        font-weight: bold !important;
        padding: 10px 20px !important;
        font-family: 'Montserrat', sans-serif !important;
        transition: background-color 0.3s ease !important;
    }
    .gr-button-primary:hover {
        background-color: #005f99 !important;
    }
    .gr-button-secondary {
        background-color: #f44336 !important;
        color: white !important;
        border-radius: 10px !important;
        font-size: 18px !important;
        font-weight: bold !important;
        padding: 10px 20px !important;
        font-family: 'Montserrat', sans-serif !important;
        transition: background-color 0.3s ease !important;
    }
    .gr-button-secondary:hover {
        background-color: #c62828 !important;
    }
    .gr-output {
        background-color: #e0f7fa;
        border: 2px solid #007acc;
        border-radius: 10px;
        padding: 15px;
        font-size: 16px;
        font-family: 'Roboto', sans-serif;
        font-weight: bold;
        color: #00796b;
    }
"""

# Gradio app setup
interface = gr.Interface(
    fn=gradio_interface,
    inputs=[
        gr.Textbox(label="🧠 Math Question", placeholder="Enter your math question here...", elem_id="math_question"),
        gr.Textbox(label="βœ… Correct Answer", placeholder="Enter the correct answer here...", elem_id="correct_answer"),
    ],
    outputs=[
        gr.JSON(label="πŸ“Š Results"),  # Display the results in a JSON format
    ],
    title="πŸ”’ Math Question Solver",
    description="Enter a math question to get the majority-voted prediction and the steps to solve it.",
    css=custom_css  # Apply custom CSS
)

if __name__ == "__main__":
    interface.launch()