Spaces:
Sleeping
Sleeping
File size: 5,452 Bytes
8a529be cc60cf1 444d1cb 8da95b6 444d1cb 8a529be 444d1cb 8da95b6 444d1cb 8da95b6 444d1cb 8da95b6 cc60cf1 444d1cb cc60cf1 444d1cb cc60cf1 444d1cb cc60cf1 8da95b6 8d5df47 8da95b6 8d5df47 8da95b6 8d5df47 8da95b6 8d5df47 8da95b6 8d5df47 8da95b6 8d5df47 8da95b6 8d5df47 8da95b6 8d5df47 b6b9c26 71a7f13 e0c93c6 cc60cf1 71a7f13 a8878d7 b6b9c26 a8878d7 71b8cde 8da95b6 444d1cb 8a529be 444d1cb b6b9c26 444d1cb 5b32090 444d1cb 5b32090 cc60cf1 8da95b6 444d1cb cc60cf1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
import gradio as gr
import ctranslate2
from transformers import AutoTokenizer
from huggingface_hub import snapshot_download
from codeexecutor import postprocess_completion, get_majority_vote, get_solution_steps
# Define the model and tokenizer loading
model_prompt = "Solve the following mathematical problem: "
tokenizer = AutoTokenizer.from_pretrained("AI-MO/NuminaMath-7B-TIR")
model_path = snapshot_download(repo_id="Makima57/deepseek-math-Numina")
generator = ctranslate2.Generator(model_path, device="cpu", compute_type="int8")
iterations = 10
# Function to generate predictions using the model
def get_prediction(question):
input_text = model_prompt + question
input_tokens = tokenizer.tokenize(input_text)
results = generator.generate_batch([input_tokens])
output_tokens = results[0].sequences[0]
predicted_answer = tokenizer.convert_tokens_to_string(output_tokens)
return predicted_answer
# Function to perform majority voting across multiple predictions
def majority_vote(question, num_iterations=10):
all_predictions = []
all_answer = []
for _ in range(num_iterations):
prediction = get_prediction(question)
answer = postprocess_completion(prediction, True, True)
all_predictions.append(prediction)
all_answer.append(answer)
majority_voted_pred = max(set(all_predictions), key=all_predictions.count)
majority_voted_ans = get_majority_vote(all_answer)
return majority_voted_pred, majority_voted_ans
# Function to get steps for solving the problem
def get_solution_steps(question):
# Assuming 'get_solution_steps' is a function that provides steps for solving the problem
steps = get_solution_steps(question) # You need to implement this function based on how steps are generated
return steps
# Gradio interface for user input and output
def gradio_interface(question, correct_answer):
final_prediction, final_answer = majority_vote(question, iterations)
solution_steps = get_solution_steps(question) # Fetch the steps to solve the problem
return {
"Question": question,
"Majority-Voted Prediction": final_prediction,
"Correct Solution": correct_answer,
"Majority Answer": final_answer,
"Solution Steps": solution_steps
}
# Custom CSS for enhanced design (unchanged)
custom_css = """
body {
background-color: #fafafa;
font-family: 'Open Sans', sans-serif;
}
.gradio-container {
background-color: #ffffff;
border: 3px solid #007acc;
border-radius: 15px;
padding: 20px;
box-shadow: 0 8px 20px rgba(0, 0, 0, 0.15);
max-width: 800px;
margin: 50px auto;
}
h1 {
font-family: 'Poppins', sans-serif;
color: #007acc;
font-weight: bold;
font-size: 32px;
text-align: center;
margin-bottom: 20px;
}
p {
font-family: 'Roboto', sans-serif;
font-size: 18px;
color: #333;
text-align: center;
margin-bottom: 15px;
}
input, textarea {
font-family: 'Montserrat', sans-serif;
font-size: 16px;
padding: 10px;
border: 2px solid #007acc;
border-radius: 10px;
background-color: #f1f8ff;
margin-bottom: 15px;
}
#math_question, #correct_answer {
font-size: 20px;
font-family: 'Poppins', sans-serif;
font-weight: 500px;
color: #007acc;
margin-bottom: 5px;
display: inline-block;
}
textarea {
min-height: 150px;
}
.gr-button-primary {
background-color: #007acc !important;
color: white !important;
border-radius: 10px !important;
font-size: 18px !important;
font-weight: bold !important;
padding: 10px 20px !important;
font-family: 'Montserrat', sans-serif !important;
transition: background-color 0.3s ease !important;
}
.gr-button-primary:hover {
background-color: #005f99 !important;
}
.gr-button-secondary {
background-color: #f44336 !important;
color: white !important;
border-radius: 10px !important;
font-size: 18px !important;
font-weight: bold !important;
padding: 10px 20px !important;
font-family: 'Montserrat', sans-serif !important;
transition: background-color 0.3s ease !important;
}
.gr-button-secondary:hover {
background-color: #c62828 !important;
}
.gr-output {
background-color: #e0f7fa;
border: 2px solid #007acc;
border-radius: 10px;
padding: 15px;
font-size: 16px;
font-family: 'Roboto', sans-serif;
font-weight: bold;
color: #00796b;
}
"""
# Gradio app setup
interface = gr.Interface(
fn=gradio_interface,
inputs=[
gr.Textbox(label="π§ Math Question", placeholder="Enter your math question here...", elem_id="math_question"),
gr.Textbox(label="β
Correct Answer", placeholder="Enter the correct answer here...", elem_id="correct_answer"),
],
outputs=[
gr.JSON(label="π Results"), # Display the results in a JSON format
],
title="π’ Math Question Solver",
description="Enter a math question to get the majority-voted prediction and the steps to solve it.",
css=custom_css # Apply custom CSS
)
if __name__ == "__main__":
interface.launch()
|