Update app.py
Browse files
app.py
CHANGED
@@ -3,24 +3,9 @@ from transformers import pipeline
|
|
3 |
|
4 |
def mask(text):
|
5 |
mask_model = pipeline("fill-mask", model="google-bert/bert-base-uncased")
|
|
|
|
|
6 |
|
7 |
-
# Extract labels (classes) and scores from predictions
|
8 |
-
labels = [result["label"] for result in mask_model]
|
9 |
-
scores = [result["score"] for result in mask_model]
|
10 |
-
|
11 |
-
# Find the index of the best prediction (highest score)
|
12 |
-
best_prediction_idx = scores.index(max(scores))
|
13 |
-
|
14 |
-
# Create a dictionary with results
|
15 |
-
response_dict = {
|
16 |
-
"Original Text": text,
|
17 |
-
"All Predictions": labels,
|
18 |
-
"Best Prediction": f"**{labels[best_prediction_idx]}** (Score: {scores[best_prediction_idx]:.4f})"
|
19 |
-
}
|
20 |
-
|
21 |
-
return response_dict
|
22 |
-
# output = mask_model(text)
|
23 |
-
# return output[0]['sequence']
|
24 |
|
25 |
# Gradio UI
|
26 |
examples=[['Today I went to [MASK] after I got out of bed.']]
|
|
|
3 |
|
4 |
def mask(text):
|
5 |
mask_model = pipeline("fill-mask", model="google-bert/bert-base-uncased")
|
6 |
+
output = mask_model(text)
|
7 |
+
return output[0]['sequence']
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
# Gradio UI
|
11 |
examples=[['Today I went to [MASK] after I got out of bed.']]
|