Spaces:
Paused
Paused
File size: 1,291 Bytes
e2782e7 9b12d4a e64ccec 9b12d4a e4a1586 2139b27 9b12d4a e4a1586 9b12d4a 56be01d 9b12d4a 2fa8310 03269c5 9b12d4a 515ab2f 9a64a7c 143ba51 9b12d4a 9a85bdd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
import gradio as gr
from PIL import Image
import torch
from transformers import BlipProcessor, BlipForQuestionAnswering
# Initialize the model and processor
processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base")
model = BlipForQuestionAnswering.from_pretrained("ManishThota/InstructBlip-VQA").to("cuda")
# model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base")
def predict_answer(image, question):
# Convert PIL image to RGB if not already
image = image.convert("RGB")
# Prepare inputs
encoding = processor(image, question, return_tensors="pt").to("cuda:0", torch.float16)
out = model.generate(**encoding)
generated_text = processor.decode(out[0], skip_special_tokens=True)
return generated_text
def gradio_predict(image, question):
answer = predict_answer(image, question)
return answer
# Define the Gradio interface
iface = gr.Interface(
fn=gradio_predict,
inputs=[gr.Image(type="pil", label="Upload or Drag an Image"), gr.Textbox(label="Question", placeholder="e.g. What is this?", scale=4)],
outputs=gr.TextArea(label="Answer"),
title="Instruct Visual Question Answering",
description="Tiny 1B parameter Vision Language Model.",
)
# Launch the app
iface.queue().launch(debug=True)
|