ManojINaik's picture
Update main.py
6492ae9 verified
raw
history blame
1.21 kB
from fastapi import FastAPI
from pydantic import BaseModel
from huggingface_hub import InferenceClient
app = FastAPI()
# Initialize the inference client for the AI model
client = InferenceClient("nvidia/Llama-3.1-Nemotron-70B-Instruct-HF")
class CourseRequest(BaseModel):
course_name: str
def format_prompt(course_name: str):
return f"Please generate a detailed roadmap for the course '{course_name}'. Include key topics, recommended resources, and a learning timeline."
def generate_roadmap(item: CourseRequest):
prompt = format_prompt(item.course_name)
# You can adjust these parameters as needed
generate_kwargs = {
"temperature": 0.7,
"max_new_tokens": 150,
"top_p": 0.9,
"repetition_penalty": 1.1,
}
# Call the model to generate the roadmap
stream = client.text_generation(prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
return output
@app.post("/generate/")
async def generate_roadmap_endpoint(course_request: CourseRequest):
roadmap = generate_roadmap(course_request)
return {"roadmap": roadmap}