ManojINaik commited on
Commit
6492ae9
·
verified ·
1 Parent(s): d75d863

Update main.py

Browse files
Files changed (1) hide show
  1. main.py +19 -37
main.py CHANGED
@@ -1,57 +1,39 @@
1
  from fastapi import FastAPI
2
  from pydantic import BaseModel
3
  from huggingface_hub import InferenceClient
4
- import uvicorn
5
 
6
  app = FastAPI()
7
 
8
- # Initialize the InferenceClient with the specified model
9
  client = InferenceClient("nvidia/Llama-3.1-Nemotron-70B-Instruct-HF")
10
 
11
- # Define the structure of the request body
12
  class CourseRequest(BaseModel):
13
  course_name: str
14
- history: list = [] # Keeping history optional
15
- temperature: float = 0.0
16
- max_new_tokens: int = 1048
17
- top_p: float = 0.15
18
- repetition_penalty: float = 1.0
19
-
20
- # Format the prompt for the model
21
- def format_prompt(course_name, history):
22
- prompt = "<s>"
23
- for user_prompt, bot_response in history:
24
- prompt += f"[INST] {user_prompt} [/INST] {bot_response} </s> "
25
- prompt += f"[INST] Generate a roadmap for the course: {course_name} [/INST]"
26
- return prompt
27
-
28
- # Generate text using the specified parameters
29
- def generate(course_request: CourseRequest):
30
- temperature = max(float(course_request.temperature), 1e-2)
31
- top_p = float(course_request.top_p)
32
 
 
 
 
 
 
 
 
33
  generate_kwargs = {
34
- 'temperature': temperature,
35
- 'max_new_tokens': course_request.max_new_tokens,
36
- 'top_p': top_p,
37
- 'repetition_penalty': course_request.repetition_penalty,
38
- 'do_sample': True,
39
- 'seed': 42,
40
  }
41
 
42
- formatted_prompt = format_prompt(course_request.course_name, course_request.history)
43
- stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
44
  output = ""
45
 
46
  for response in stream:
47
  output += response.token.text
 
48
  return output
49
 
50
- # Define the API endpoint for generating course roadmaps
51
- @app.post("/generate-roadmap/")
52
- async def generate_roadmap(course_request: CourseRequest):
53
- return {"roadmap": generate(course_request)}
54
-
55
- # Run the application (uncomment the next two lines if running this as a standalone script)
56
- # if __name__ == "__main__":
57
- # uvicorn.run(app, host="0.0.0.0", port=8000)
 
1
  from fastapi import FastAPI
2
  from pydantic import BaseModel
3
  from huggingface_hub import InferenceClient
 
4
 
5
  app = FastAPI()
6
 
7
+ # Initialize the inference client for the AI model
8
  client = InferenceClient("nvidia/Llama-3.1-Nemotron-70B-Instruct-HF")
9
 
 
10
  class CourseRequest(BaseModel):
11
  course_name: str
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
 
13
+ def format_prompt(course_name: str):
14
+ return f"Please generate a detailed roadmap for the course '{course_name}'. Include key topics, recommended resources, and a learning timeline."
15
+
16
+ def generate_roadmap(item: CourseRequest):
17
+ prompt = format_prompt(item.course_name)
18
+
19
+ # You can adjust these parameters as needed
20
  generate_kwargs = {
21
+ "temperature": 0.7,
22
+ "max_new_tokens": 150,
23
+ "top_p": 0.9,
24
+ "repetition_penalty": 1.1,
 
 
25
  }
26
 
27
+ # Call the model to generate the roadmap
28
+ stream = client.text_generation(prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
29
  output = ""
30
 
31
  for response in stream:
32
  output += response.token.text
33
+
34
  return output
35
 
36
+ @app.post("/generate/")
37
+ async def generate_roadmap_endpoint(course_request: CourseRequest):
38
+ roadmap = generate_roadmap(course_request)
39
+ return {"roadmap": roadmap}