Spaces:
Sleeping
Sleeping
File size: 1,433 Bytes
6f7d7b4 8a4c070 6f7d7b4 8a4c070 6f7d7b4 8a4c070 6f7d7b4 8a4c070 6f7d7b4 8a4c070 6f7d7b4 8a4c070 6f7d7b4 8a4c070 6f7d7b4 8a4c070 6f7d7b4 8a4c070 6f7d7b4 8a4c070 6f7d7b4 8a4c070 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
import gradio as gr
from transformers import pipeline
# Initialize the pipeline for code generation and assistance
pipe = pipeline("text-generation", model="Qwen/Qwen2.5-Coder-32B-Instruct")
# Function to interact with the model for code-related assistance
def code_assistance(user_input):
# Define the system message to set the context
system_message = "You are Qwen, a code assistant created by Alibaba Cloud. You assist with code generation, debugging, and explanation tasks."
# Format the prompt with the system message and user input (code-related query)
prompt = f"{system_message}\nUser: {user_input}\nAssistant (Code Assistance):"
# Use the pipeline to generate the response for code assistance
response = pipe(prompt, max_length=512, num_return_sequences=1)
# Extract and clean the response to return only the assistant's code suggestion or explanation
generated_response = response[0]['generated_text'].split("Assistant (Code Assistance):")[1].strip()
return generated_response
# Create the Gradio interface for the code assistance chatbot
iface = gr.Interface(
fn=code_assistance,
inputs=gr.Textbox(lines=5, placeholder="Ask for code help..."),
outputs="text",
title="Qwen2.5-Coder Chatbot",
description="A chatbot using Qwen2.5-Coder for code generation, debugging, and explanation tasks."
)
# Launch the Gradio interface
iface.launch()
|