File size: 18,052 Bytes
6dba7a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 |
import pandas as pd
import tweepy
import re
import emoji
import spacy
import gensim
import json
import string
from spacy.tokenizer import Tokenizer
from gensim.parsing.preprocessing import STOPWORDS as SW
from wordcloud import STOPWORDS
from gensim.corpora import Dictionary
from gensim.models.coherencemodel import CoherenceModel
from pprint import pprint
import numpy as np
import tqdm
from gensim.parsing.preprocessing import preprocess_string, strip_punctuation, strip_numeric
import torch
from transformers import T5ForConditionalGeneration,T5Tokenizer
from googletrans import Translator
from bertopic import BERTopic
from umap import UMAP
from sklearn.feature_extraction.text import CountVectorizer
from operator import itemgetter
import gradio as gr
global df
bearer_token = 'AAAAAAAAAAAAAAAAAAAAACEigwEAAAAACoP8KHJYLOKCL4OyB9LEPV00VB0%3DmyeDROUvw4uipHwvbPPfnTuY0M9ORrLuXrMvcByqZhwo3SUc4F'
client = tweepy.Client(bearer_token=bearer_token)
nlp = spacy.load('en_core_web_lg')
print('hi')
def scrape(keywords):
query = keywords + ' (lang:en OR lang:tl) -is:retweet'
max_results = 100
tweet_fields=['geo', 'id', 'lang', 'created_at']
expansions=['geo.place_id']
place_fields = ['contained_within', 'country', 'country_code', 'full_name', 'geo', 'id', 'name', 'place_type']
response = client.search_recent_tweets(
query=query,
max_results=max_results,
tweet_fields=tweet_fields,
expansions=expansions,
place_fields=place_fields
)
tweets = []
for x in response[0]:
tweets.append(str(x))
place_data = response[1]
df = pd.DataFrame(tweets, columns=['tweet'])
return place_data
def get_example(dataset):
df = pd.read_csv(dataset + '.csv')
return df
def give_emoji_free_text(text):
"""
Removes emoji's from tweets
Accepts:
Text (tweets)
Returns:
Text (emoji free tweets)
"""
emoji_list = [c for c in text if c in emoji.EMOJI_DATA]
clean_text = ' '.join([str for str in text.split() if not any(i in str for i in emoji_list)])
return clean_text
def url_free_text(text):
'''
Cleans text from urls
'''
text = re.sub(r'http\S+', '', text)
return text
def get_lemmas(text):
'''Used to lemmatize the processed tweets'''
lemmas = []
doc = nlp(text)
for token in doc:
if ((token.is_stop == False) and (token.is_punct == False)) and (token.pos_ != 'PRON'):
lemmas.append(token.lemma_)
return lemmas
# Tokenizer function
def tokenize(text):
"""
Parses a string into a list of semantic units (words)
Args:
text (str): The string that the function will tokenize.
Returns:
list: tokens parsed out
"""
# Removing url's
pattern = r"http\S+"
tokens = re.sub(pattern, "", text) # https://www.youtube.com/watch?v=O2onA4r5UaY
tokens = re.sub('[^a-zA-Z 0-9]', '', text)
tokens = re.sub('[%s]' % re.escape(string.punctuation), '', text) # Remove punctuation
tokens = re.sub('\w*\d\w*', '', text) # Remove words containing numbers
# tokens = re.sub('@*!*$*', '', text) # Remove @ ! $
tokens = tokens.strip(',') # TESTING THIS LINE
tokens = tokens.strip('?') # TESTING THIS LINE
tokens = tokens.strip('!') # TESTING THIS LINE
tokens = tokens.strip("'") # TESTING THIS LINE
tokens = tokens.strip(".") # TESTING THIS LINE
tokens = tokens.lower().split() # Make text lowercase and split it
return tokens
def cleaning(df):
df.rename(columns = {'tweet':'original_tweets'}, inplace = True)
# Apply the function above and get tweets free of emoji's
call_emoji_free = lambda x: give_emoji_free_text(x)
# Apply `call_emoji_free` which calls the function to remove all emoji's
df['emoji_free_tweets'] = df['original_tweets'].apply(call_emoji_free)
#Create a new column with url free tweets
df['url_free_tweets'] = df['emoji_free_tweets'].apply(url_free_text)
f = open('stopwords-tl.json')
tlStopwords = json.loads(f.read())
stopwords = set(STOPWORDS)
stopwords.update(tlStopwords)
stopwords.update(['na', 'sa', 'ko', 'ako', 'ng', 'mga', 'ba', 'ka', 'yung', 'lang', 'di', 'mo', 'kasi'])
# Tokenizer
tokenizer = Tokenizer(nlp.vocab)
# Custom stopwords
custom_stopwords = ['hi','\n','\n\n', '&', ' ', '.', '-', 'got', "it's", 'it’s', "i'm", 'i’m', 'im', 'want', 'like', '$', '@']
# Customize stop words by adding to the default list
STOP_WORDS = nlp.Defaults.stop_words.union(custom_stopwords)
# ALL_STOP_WORDS = spacy + gensim + wordcloud
ALL_STOP_WORDS = STOP_WORDS.union(SW).union(stopwords)
tokens = []
STOP_WORDS.update(stopwords)
for doc in tokenizer.pipe(df['url_free_tweets'], batch_size=500):
doc_tokens = []
for token in doc:
if token.text.lower() not in STOP_WORDS:
doc_tokens.append(token.text.lower())
tokens.append(doc_tokens)
# Makes tokens column
df['tokens'] = tokens
# Make tokens a string again
df['tokens_back_to_text'] = [' '.join(map(str, l)) for l in df['tokens']]
df['lemmas'] = df['tokens_back_to_text'].apply(get_lemmas)
# Make lemmas a string again
df['lemmas_back_to_text'] = [' '.join(map(str, l)) for l in df['lemmas']]
# Apply tokenizer
df['lemma_tokens'] = df['lemmas_back_to_text'].apply(tokenize)
def split_corpus(corpus, n):
for i in range(0, len(corpus), n):
corpus_split = corpus
yield corpus_split[i:i + n]
def compute_coherence_values_base_lda(dictionary, corpus, texts, limit, coherence, start=2, step=1):
coherence_values = []
model_list = []
for num_topics in range(start, limit, step):
model = gensim.models.ldamodel.LdaModel(corpus=corpus,
num_topics=num_topics,
random_state=100,
chunksize=200,
passes=10,
per_word_topics=True,
id2word=id2word)
model_list.append(model)
coherencemodel = CoherenceModel(model=model, texts=texts, dictionary=dictionary, coherence=coherence)
coherence_values.append(coherencemodel.get_coherence())
return model_list, coherence_values
def base_lda():
# Create a id2word dictionary
global id2word
id2word = Dictionary(df['lemma_tokens'])
# Filtering Extremes
id2word.filter_extremes(no_below=2, no_above=.99)
# Creating a corpus object
global corpus
corpus = [id2word.doc2bow(d) for d in df['lemma_tokens']]
global corpus_og
corpus_og = [id2word.doc2bow(d) for d in df['lemma_tokens']]
corpus_split = corpus
split_corpus(corpus_split, 5)
global coherence
coherence = 'c_v'
coherence_averages = [0] * 8
for i in range(5):
training_corpus = corpus_split
training_corpus.remove(training_corpus[i])
print(training_corpus[i])
model_list, coherence_values = compute_coherence_values_base_lda(dictionary=id2word, corpus=training_corpus,
texts=df['lemma_tokens'],
start=2,
limit=10,
step=1,
coherence=coherence)
for j in range(len(coherence_values)):
coherence_averages[j] += coherence_values[j]
limit = 10; start = 2; step = 1;
x = range(start, limit, step)
coherence_averages = [x / 5 for x in coherence_averages]
if coherence == 'c_v':
k_max = max(coherence_averages)
else:
k_max = min(coherence_averages, key=abs)
global num_topics
num_topics = coherence_averages.index(k_max) + 2
def compute_coherence_values2(corpus, dictionary, k, a, b):
lda_model = gensim.models.ldamodel.LdaModel(corpus=corpus,
id2word=id2word,
num_topics=num_topics,
random_state=100,
chunksize=200,
passes=10,
alpha=a,
eta=b,
per_word_topics=True)
coherence_model_lda = CoherenceModel(model=lda_model,
texts=df['lemma_tokens'],
dictionary=id2word,
coherence='c_v')
return coherence_model_lda.get_coherence()
def hyperparameter_optimization():
grid = {}
grid['Validation_Set'] = {}
min_topics = 1
max_topics = 10
step_size = 1
topics_range = range(min_topics, max_topics, step_size)
alpha = [0.05, 0.1, 0.5, 1, 5, 10]
# alpha.append('symmetric')
# alpha.append('asymmetric')
beta = [0.05, 0.1, 0.5, 1, 5, 10]
# beta.append('symmetric')
num_of_docs = len(corpus_og)
corpus_sets = [gensim.utils.ClippedCorpus(corpus_og, int(num_of_docs*0.75)),
corpus_og]
corpus_title = ['75% Corpus', '100% Corpus']
model_results = {'Validation_Set': [],
'Alpha': [],
'Beta': [],
'Coherence': []
}
if 1 == 1:
pbar = tqdm.tqdm(total=540)
for i in range(len(corpus_sets)):
for a in alpha:
for b in beta:
cv = compute_coherence_values2(corpus=corpus_sets[i],
dictionary=id2word,
k=num_topics,
a=a,
b=b)
model_results['Validation_Set'].append(corpus_title[i])
model_results['Alpha'].append(a)
model_results['Beta'].append(b)
model_results['Coherence'].append(cv)
pbar.update(1)
pd.DataFrame(model_results).to_csv('lda_tuning_results_new.csv', index=False)
pbar.close()
params_df = pd.read_csv('lda_tuning_results_new.csv')
params_df = params_df[params_df.Validation_Set == '75% Corpus']
params_df.reset_index(inplace=True)
params_df = params_df.replace(np.inf, -np.inf)
max_params = params_df.loc[params_df['Coherence'].idxmax()]
max_coherence = max_params['Coherence']
max_alpha = max_params['Alpha']
max_beta = max_params['Beta']
max_validation_set = max_params['Validation_Set']
global lda_model_final
lda_model_final = gensim.models.ldamodel.LdaModel(corpus=corpus_og,
id2word=id2word,
num_topics=num_topics,
random_state=100,
chunksize=200,
passes=10,
alpha=max_alpha,
eta=max_beta,
per_word_topics=True)
coherence_model_lda = CoherenceModel(model=lda_model_final, texts=df['lemma_tokens'], dictionary=id2word,
coherence='c_v')
coherence_lda = coherence_model_lda.get_coherence()
return coherence_lda
def assignMaxTopic(l):
maxTopic = max(l,key=itemgetter(1))[0]
return maxTopic
def assignTopic(l):
topics = []
for x in l:
topics.append(x[0])
def topic_assignment(df):
lda_topics = lda_model_final.show_topics(num_words=10)
topics = []
filters = [lambda x: x.lower(), strip_punctuation, strip_numeric]
for topic in lda_topics:
topics.append(preprocess_string(topic[1], filters))
df['topic'] = [sorted(lda_model_final[corpus_og][text][0]) for text in range(len(df['original_tweets']))]
df = df[df['topic'].map(lambda d: len(d)) > 0]
df['max_topic'] = df['topic'].map(lambda row: assignMaxTopic(row))
global topic_clusters
topic_clusters = []
for i in range(num_topics):
topic_clusters.append(df[df['max_topic'].isin(([i]))])
topic_clusters[i] = topic_clusters[i]['original_tweets'].tolist()
def get_topic_value(row, i):
if len(row) == 1:
return row[0][1]
else:
try:
return row[i][1]
except Exception as e:
print(e)
def reprsentative_tweets():
global top_tweets
top_tweets = []
for i in range(len(topic_clusters)):
tweets = df.loc[df['max_topic'] == i]
tweets['topic'] = tweets['topic'].apply(lambda x: get_topic_value(x, i))
# tweets['topic'] = [row[i][1] for row in tweets['topic']]
tweets_sorted = tweets.sort_values('topic', ascending=False)
tweets_sorted.drop_duplicates(subset=['original_tweets'])
rep_tweets = tweets_sorted['original_tweets']
rep_tweets = [*set(rep_tweets)]
top_tweets.append(rep_tweets[:5])
# print('Topic ', i)
# print(rep_tweets[:5])
return top_tweets
def topic_summarization(topic_groups):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = T5ForConditionalGeneration.from_pretrained("Michau/t5-base-en-generate-headline")
tokenizer = T5Tokenizer.from_pretrained("Michau/t5-base-en-generate-headline")
model = model.to(device)
translator = Translator()
headlines = []
for i in range(len(topic_groups)):
tweets = " ".join(topic_groups[i])
# print(tweets)
out = translator.translate(tweets, dest='en')
text = out.text
# print(tweets)
max_len = 256
encoding = tokenizer.encode_plus(text, return_tensors = "pt")
input_ids = encoding["input_ids"].to(device)
attention_masks = encoding["attention_mask"].to(device)
beam_outputs = model.generate(
input_ids = input_ids,
attention_mask = attention_masks,
max_length = 64,
num_beams = 3,
early_stopping = True,
)
result = tokenizer.decode(beam_outputs[0])
headlines += "Topic " + str(i) + " " + result
return headlines
def compute_coherence_value_bertopic(topic_model):
topic_words = [[words for words, _ in topic_model.get_topic(topic)] for topic in range(len(set(topics))-1)]
coherence_model = CoherenceModel(topics=topic_words,
texts=df['lemma_tokens'],
corpus=corpus,
dictionary=id2word,
coherence=coherence)
coherence_score = coherence_model.get_coherence()
return coherence_score
def base_bertopic():
df['lemma_tokens_string'] = df['lemma_tokens'].apply(lambda x: ' '.join(x))
global id2word
id2word = Dictionary(df['lemma_tokens'])
global corpus
corpus = [id2word.doc2bow(d) for d in df['lemma_tokens']]
global umap_model
umap_model = UMAP(n_neighbors=15,
n_components=5,
min_dist=0.0,
metric='cosine',
random_state=100)
base_topic_model = BERTopic(umap_model=umap_model, language="english", calculate_probabilities=True)
topics, probabilities = base_topic_model.fit_transform(df['lemma_tokens_string'])
try:
print(compute_coherence_value_bertopic(base_topic_model))
except:
print('Unable to generate meaningful topics (Base BERTopic model)')
def optimized_bertopic():
vectorizer_model = CountVectorizer(max_features=1_000, stop_words="english")
optimized_topic_model = BERTopic(umap_model=umap_model,
language="multilingual",
n_gram_range=(1, 3),
vectorizer_model=vectorizer_model,
calculate_probabilities=True)
topics, probabilities = optimized_topic_model.fit_transform(df['lemma_tokens_string'])
try:
print(compute_coherence_value_bertopic(optimized_topic_model))
except:
print('Unable to generate meaningful topics, base BERTopic model if possible')
rep_docs = optimized_topic_model.representative_docs_
global top_tweets
top_tweets = []
for topic in rep_docs:
if topic == -1:
print('test')
continue
topic_docs = rep_docs.get(topic)
tweets = []
for doc in topic_docs:
index = df.isin([doc]).any(axis=1).idxmax()
# print(index)
tweets.append(df.loc[index, 'original_tweets'])
print(tweets)
top_tweets.append(tweets)
global examples
def main(dataset, model):
global df
examples = [ "katip,katipunan",
"bgc,bonifacio global city",
"pobla,poblacion",
"cubao",
"taft"
]
keyword_list = dataset.split(',')
if len(keyword_list) > 1:
keywords = '(' + ' OR '.join(keyword_list) + ')'
else:
keywords = keyword_list[0]
if dataset in examples:
df = get_example(keywords)
place_data = 'test'
else:
print(dataset)
place_data = str(scrape(keyword_list))
print(df)
cleaning(df)
print(df)
if model == 'LDA':
base_lda()
coherence = hyperparameter_optimization()
topic_assignment(df)
top_tweets = reprsentative_tweets()
else:
base_bertopic()
optimized_bertopic()
headlines = topic_summarization(top_tweets)
headlines = '\n'.join(str(h) for h in headlines)
return place_data, headlines
iface = gr.Interface(fn=main,
inputs=[gr.Dropdown(["katip,katipunan",
"bgc,bonifacio global city",
"cubao",
"taft",
"pobla,poblacion"],
label="Dataset"),
gr.Dropdown(["LDA",
"BERTopic"],
label="Model")
],
# examples=examples,
outputs=["text",
"text"])
iface.launch()
|