File size: 18,649 Bytes
e2bd7bd
56685c8
e2bd7bd
56685c8
e2bd7bd
 
 
56685c8
 
e2bd7bd
56685c8
 
 
e2bd7bd
 
 
56685c8
 
 
 
e2bd7bd
 
56685c8
 
 
 
 
 
 
 
 
 
997565c
 
7406912
 
cf4edb8
56685c8
 
 
c678078
56685c8
eeaa85e
56685c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9486c99
56685c8
e2bd7bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56685c8
 
 
 
 
 
 
 
 
 
 
 
e2bd7bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6dba7a5
 
 
 
 
 
5483c2e
6dba7a5
 
 
 
 
 
 
 
 
 
 
 
 
 
3d86f74
6dba7a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12bb295
e2bd7bd
 
 
 
 
 
 
 
 
 
 
56685c8
 
8d45e4b
56685c8
 
 
 
e2bd7bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12bb295
 
 
 
 
 
 
49e4936
e2bd7bd
56685c8
e2bd7bd
 
 
 
 
 
56685c8
e2bd7bd
56685c8
 
e2bd7bd
56685c8
4be79ee
80316dd
62aff83
4dfaac6
e2bd7bd
56685c8
 
e2bd7bd
56685c8
 
6d8d066
56685c8
 
9da4768
3d86f74
136249e
e2bd7bd
 
 
56685c8
136249e
555572e
56685c8
 
e2bd7bd
56685c8
e2bd7bd
56685c8
 
 
 
e2bd7bd
56685c8
 
 
49e4936
e2bd7bd
 
 
56685c8
 
 
 
 
e2bd7bd
56685c8
 
e2bd7bd
 
56685c8
e2bd7bd
56685c8
 
 
e2bd7bd
 
 
 
 
 
 
 
 
 
 
 
56685c8
 
 
 
 
e2bd7bd
 
 
 
 
56685c8
e2bd7bd
 
 
 
56685c8
e2bd7bd
56685c8
e2bd7bd
 
 
 
56685c8
 
 
 
 
 
 
 
 
 
 
 
 
e2bd7bd
6dba7a5
e2bd7bd
6dba7a5
e2bd7bd
 
49e4936
e2bd7bd
 
 
 
 
 
56685c8
6650027
e2bd7bd
56685c8
e2bd7bd
56685c8
e2bd7bd
 
 
 
56685c8
49e4936
56685c8
 
e2bd7bd
 
 
 
 
 
 
 
56685c8
 
 
6dba7a5
397900b
56685c8
 
7406912
56685c8
7406912
 
56685c8
 
 
 
 
 
 
 
 
 
 
 
 
7406912
 
56685c8
 
 
 
 
 
 
 
 
 
1ed481b
56685c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
802e30e
56685c8
 
 
 
 
 
 
 
 
 
 
 
0010adc
56685c8
 
 
 
 
 
 
1818f05
f2b9e9f
56685c8
 
802e30e
56685c8
 
 
 
 
 
 
 
 
 
 
 
1818f05
4433c46
56685c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2b9e9f
56685c8
802e30e
56685c8
95b5328
 
c8acb18
65012fd
95b5328
 
 
 
 
 
56685c8
eeaa85e
 
 
 
95dd02a
56685c8
eeaa85e
56685c8
 
95b5328
56685c8
65012fd
ad01359
56685c8
12bb295
95dd02a
2317b83
95dd02a
1617778
56685c8
12bb295
802e30e
c87d89d
56685c8
95dd02a
56685c8
 
634e312
56685c8
 
 
634e312
56685c8
95b5328
56685c8
ad01359
818b9dd
 
 
 
 
56685c8
 
 
 
c44a5c1
634e312
 
 
b7a3fbc
c8acb18
 
1617778
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
import pandas as pd
import tweepy
import re
import emoji
import spacy
import gensim
import json
import string

from spacy.tokenizer import Tokenizer
from gensim.parsing.preprocessing import STOPWORDS as SW
from wordcloud import STOPWORDS

from gensim.corpora import Dictionary
from gensim.models.coherencemodel import CoherenceModel
from pprint import pprint

import numpy as np
import tqdm

from gensim.parsing.preprocessing import preprocess_string, strip_punctuation, strip_numeric

import torch
from transformers import T5ForConditionalGeneration,T5Tokenizer
from googletrans import Translator

from bertopic import BERTopic
from umap import UMAP
from sklearn.feature_extraction.text import CountVectorizer

from operator import itemgetter

import gradio as gr

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

global df
bearer_token = 'AAAAAAAAAAAAAAAAAAAAACEigwEAAAAACoP8KHJYLOKCL4OyB9LEPV00VB0%3DmyeDROUvw4uipHwvbPPfnTuY0M9ORrLuXrMvcByqZhwo3SUc4F'
client = tweepy.Client(bearer_token=bearer_token)
nlp = spacy.load('en_core_web_lg')
print('hi')

def scrape(keywords):
    query = keywords + ' (lang:en OR lang:tl) -is:retweet'
    max_results = 100
    tweet_fields=['geo', 'id', 'lang', 'created_at']
    expansions=['geo.place_id']
    place_fields = ['contained_within', 'country', 'country_code', 'full_name', 'geo', 'id', 'name', 'place_type']

    response = client.search_recent_tweets(
        query=query,
        max_results=max_results,
        tweet_fields=tweet_fields,
        expansions=expansions,
        place_fields=place_fields
    )

    tweets = []
    for x in response[0]:
        tweets.append(str(x))

    place_data = response[1]

    df = pd.DataFrame(tweets, columns=['tweet'])

    return place_data

def get_example(dataset):
    df = pd.read_csv(dataset + '.csv')
    return df

def give_emoji_free_text(text):
    """
    Removes emoji's from tweets
    Accepts:
        Text (tweets)
    Returns:
        Text (emoji free tweets)
    """
    emoji_list = [c for c in text if c in emoji.EMOJI_DATA]
    clean_text = ' '.join([str for str in text.split() if not any(i in str for i in emoji_list)])
    return clean_text

def url_free_text(text):
    '''
    Cleans text from urls
    '''
    text = re.sub(r'http\S+', '', text)
    return text

def get_lemmas(text):
        '''Used to lemmatize the processed tweets'''
        lemmas = []

        doc = nlp(text)

        for token in doc:
            if ((token.is_stop == False) and (token.is_punct == False)) and (token.pos_ != 'PRON'):
                lemmas.append(token.lemma_)

        return lemmas

# Tokenizer function
def tokenize(text):
    """
    Parses a string into a list of semantic units (words)
    Args:
        text (str): The string that the function will tokenize.
    Returns:
        list: tokens parsed out
    """
    # Removing url's
    pattern = r"http\S+"

    tokens = re.sub(pattern, "", text) # https://www.youtube.com/watch?v=O2onA4r5UaY
    tokens = re.sub('[^a-zA-Z 0-9]', '', text)
    tokens = re.sub('[%s]' % re.escape(string.punctuation), '', text) # Remove punctuation
    tokens = re.sub('\w*\d\w*', '', text) # Remove words containing numbers
    # tokens = re.sub('@*!*$*', '', text) # Remove @ ! $
    tokens = tokens.strip(',') # TESTING THIS LINE
    tokens = tokens.strip('?') # TESTING THIS LINE
    tokens = tokens.strip('!') # TESTING THIS LINE
    tokens = tokens.strip("'") # TESTING THIS LINE
    tokens = tokens.strip(".") # TESTING THIS LINE

    tokens = tokens.lower().split() # Make text lowercase and split it

    return tokens

def split_corpus(corpus, n):
    for i in range(0, len(corpus), n):
        corpus_split = corpus
        yield corpus_split[i:i + n]

def compute_coherence_values_base_lda(dictionary, corpus, texts, limit, coherence, start=2, step=1):
    print('compute coherence values base lda')
    coherence_values = []
    model_list = []
    for num_topics in range(start, limit, step):
        model = gensim.models.ldamodel.LdaModel(corpus=corpus,
                                                num_topics=num_topics,
                                                random_state=100,
                                                chunksize=200,
                                                passes=10,
                                                per_word_topics=True,
                                                id2word=id2word)
        model_list.append(model)
        coherencemodel = CoherenceModel(model=model, texts=texts, dictionary=dictionary, coherence=coherence)
        coherence_values.append(coherencemodel.get_coherence())

    return coherence_values

def compute_coherence_values2(corpus, dictionary, k, a, b):
    lda_model = gensim.models.ldamodel.LdaModel(corpus=corpus,
        id2word=id2word,
        num_topics=num_topics,
        random_state=100,
        chunksize=200,
        passes=10,
        alpha=a,
        eta=b,
        per_word_topics=True)
    coherence_model_lda = CoherenceModel(model=lda_model,
        texts=df['lemma_tokens'],
        dictionary=id2word,
        coherence='c_v')

    return coherence_model_lda.get_coherence()

def assignMaxTopic(l):
    maxTopic = max(l,key=itemgetter(1))[0]
    return maxTopic

def assignTopic(l):
    topics = []
    for x in l:
        topics.append(x[0])

def get_topic_value(row, i):
    if len(row) == 1:
        return row[0][1]
    else:
        try:
            return row[i][1]
        except Exception as e:
            print(e)

def cleaning(df):
    df.rename(columns = {'tweet':'original_tweets'}, inplace = True)

    # Apply the function above and get tweets free of emoji's
    call_emoji_free = lambda x: give_emoji_free_text(x)

    # Apply `call_emoji_free` which calls the function to remove all emoji's
    df['emoji_free_tweets'] = df['original_tweets'].apply(call_emoji_free)

    #Create a new column with url free tweets
    df['url_free_tweets'] = df['emoji_free_tweets'].apply(url_free_text)

    

    f = open('stopwords-tl.json')
    tlStopwords = json.loads(f.read())
    stopwords = set(STOPWORDS)
    stopwords.update(tlStopwords)
    stopwords.update(['na', 'sa', 'ko', 'ako', 'ng', 'mga', 'ba', 'ka', 'yung', 'lang', 'di', 'mo', 'kasi'])

    # Tokenizer
    tokenizer = Tokenizer(nlp.vocab)


    # Custom stopwords
    custom_stopwords = ['hi','\n','\n\n', '&', ' ', '.', '-', 'got', "it's", 'it’s', "i'm", 'i’m', 'im', 'want', 'like', '$', '@']


    # Customize stop words by adding to the default list
    STOP_WORDS = nlp.Defaults.stop_words.union(custom_stopwords)

    # ALL_STOP_WORDS = spacy + gensim + wordcloud
    ALL_STOP_WORDS = STOP_WORDS.union(SW).union(stopwords)


    tokens = []
    STOP_WORDS.update(stopwords)

    for doc in tokenizer.pipe(df['url_free_tweets'], batch_size=500):
        doc_tokens = []
        for token in doc:
            if token.text.lower() not in STOP_WORDS:
                doc_tokens.append(token.text.lower())
        tokens.append(doc_tokens)

    # Makes tokens column
    df['tokens'] = tokens

    # Make tokens a string again
    df['tokens_back_to_text'] = [' '.join(map(str, l)) for l in df['tokens']]

    df['lemmas'] = df['tokens_back_to_text'].apply(get_lemmas)

    # Make lemmas a string again
    df['lemmas_back_to_text'] = [' '.join(map(str, l)) for l in df['lemmas']]

    # Apply tokenizer
    df['lemma_tokens'] = df['lemmas_back_to_text'].apply(tokenize)

    return df

def full_lda(df):

    print('cleaning')


    print('base model setup')
    # Create a id2word dictionary
    global id2word
    id2word = Dictionary(df['lemma_tokens'])

    # Filtering Extremes
    id2word.filter_extremes(no_below=2, no_above=.99)

    # Creating a corpus object
    global corpus
    corpus = [id2word.doc2bow(d) for d in df['lemma_tokens']]
    global corpus_og
    corpus_og = [id2word.doc2bow(d) for d in df['lemma_tokens']]

    corpus_split = corpus
    print('split corpus')
    split_corpus(corpus_split, 5)
    print('after split corpus')
    print(corpus_split)

    global coherence
    coherence = 'c_v'

    coherence_averages = [0] * 8
    for i in range(5):
        print('coherence averages ' + str(i))
        training_corpus = corpus_split
        training_corpus.remove(training_corpus[i])
        # print(training_corpus[i])
        coherence_values = compute_coherence_values_base_lda(dictionary=id2word, 
                                                            corpus=training_corpus,
                                                            texts=df['lemma_tokens'],
                                                            start=2,
                                                            limit=10,
                                                            step=1,
                                                            coherence='c_v')
        # print(coherence_values + str(i))
        for j in range(len(coherence_values)):
            coherence_averages[j] += coherence_values[j]

    coherence_averages = [x / 5 for x in coherence_averages]

    if coherence == 'c_v':
        k_max = max(coherence_averages)
    else:
        k_max = min(coherence_averages, key=abs)

    global num_topics
    num_topics = coherence_averages.index(k_max) + 2
    
    print('hyperparameter opt')
    grid = {}
    grid['Validation_Set'] = {}

    min_topics = 1
    max_topics = 10
    step_size = 1
    topics_range = range(min_topics, max_topics, step_size)

    alpha = [0.05, 0.1, 0.5, 1, 5, 10]
    # alpha.append('symmetric')
    # alpha.append('asymmetric')

    beta = [0.05, 0.1, 0.5, 1, 5, 10]
    # beta.append('symmetric')

    num_of_docs = len(corpus_og)
    corpus_sets = [gensim.utils.ClippedCorpus(corpus_og, int(num_of_docs*0.75)),
                corpus_og]
    corpus_title = ['75% Corpus', '100% Corpus']
    model_results = {'Validation_Set': [],
                    'Alpha': [],
                    'Beta': [],
                    'Coherence': []
                    }
    if 1 == 1:
        pbar = tqdm.tqdm(total=540)

    for i in range(len(corpus_sets)):
        for a in alpha:
            for b in beta:
                cv = compute_coherence_values2(corpus=corpus_sets[i],
                                            dictionary=id2word,
                                            k=num_topics,
                                            a=a,
                                            b=b)
                model_results['Validation_Set'].append(corpus_title[i])
                model_results['Alpha'].append(a)
                model_results['Beta'].append(b)
                model_results['Coherence'].append(cv)

            pbar.update(1)
    pd.DataFrame(model_results).to_csv('lda_tuning_results_new.csv', index=False)
    pbar.close()

    params_df = pd.read_csv('lda_tuning_results_new.csv')
    params_df = params_df[params_df.Validation_Set == '75% Corpus']
    params_df.reset_index(inplace=True)
    params_df = params_df.replace(np.inf, -np.inf)
    max_params = params_df.loc[params_df['Coherence'].idxmax()]
    max_coherence = max_params['Coherence']
    max_alpha = max_params['Alpha']
    max_beta = max_params['Beta']
    max_validation_set = max_params['Validation_Set']

    global lda_model_final
    lda_model_final = gensim.models.ldamodel.LdaModel(corpus=corpus_og,
        id2word=id2word,
        num_topics=num_topics,
        random_state=100,
        chunksize=200,
        passes=10,
        alpha=max_alpha,
        eta=max_beta,
        per_word_topics=True)
    
    coherence_model_lda = CoherenceModel(model=lda_model_final, texts=df['lemma_tokens'], dictionary=id2word,
                                        coherence='c_v')
    coherence_lda = coherence_model_lda.get_coherence()
    
    lda_topics = lda_model_final.show_topics(num_words=10)

    print('assign topics')
    topics = []
    filters = [lambda x: x.lower(), strip_punctuation, strip_numeric]

    for topic in lda_topics:
        topics.append(preprocess_string(topic[1], filters))

    df['topic'] = [sorted(lda_model_final[corpus_og][text][0]) for text in range(len(df['original_tweets']))]

    df = df[df['topic'].map(lambda d: len(d)) > 0]
    df['max_topic'] = df['topic'].map(lambda row: assignMaxTopic(row))

    global topic_clusters
    topic_clusters = []
    for i in range(num_topics):
        topic_clusters.append(df[df['max_topic'].isin(([i]))])
        topic_clusters[i] = topic_clusters[i]['original_tweets'].tolist()
    
    print('rep topics')
    global top_tweets
    top_tweets = []
    for i in range(len(topic_clusters)):
        tweets = df.loc[df['max_topic'] == i]
        tweets['topic'] = tweets['topic'].apply(lambda x: get_topic_value(x, i))
        # tweets['topic'] = [row[i][1] for row in tweets['topic']]
        tweets_sorted = tweets.sort_values('topic', ascending=False)
        tweets_sorted.drop_duplicates(subset=['original_tweets'])
        rep_tweets = tweets_sorted['original_tweets']
        rep_tweets = [*set(rep_tweets)]
        top_tweets.append(rep_tweets[:5])
        # print('Topic ', i)
        # print(rep_tweets[:5])
    
    return top_tweets

def topic_summarization(topic_groups):
    

    tokenizer = AutoTokenizer.from_pretrained("Michau/t5-base-en-generate-headline")
    model = AutoModelForSeq2SeqLM.from_pretrained("Michau/t5-base-en-generate-headline")
    translator = Translator()

    headlines = []
    for i in range(len(topic_groups)):
        tweets = " ".join(topic_groups[i])
        # print(tweets)
        out = translator.translate(tweets, dest='en')
        text = out.text
        # print(tweets)

        max_len = 256

        encoding = tokenizer.encode_plus(text, return_tensors = "pt")
        input_ids = encoding["input_ids"]
        attention_masks = encoding["attention_mask"]

        beam_outputs = model.generate(
            input_ids = input_ids,
            attention_mask = attention_masks,
            max_length = 64,
            num_beams = 3,
            early_stopping = True,
        )

        result = tokenizer.decode(beam_outputs[0])
        print(result)
        headlines += "Topic " + str(i) + " " + result

    return headlines

def compute_coherence_value_bertopic(topic_model):
    topic_words = [[words for words, _ in topic_model.get_topic(topic)] for topic in range(len(set(topics))-1)]
    coherence_model = CoherenceModel(topics=topic_words,
                                    texts=df['lemma_tokens'],
                                    corpus=corpus,
                                    dictionary=id2word,
                                    coherence=coherence)
    coherence_score = coherence_model.get_coherence()

    return coherence_score

def base_bertopic(df):
    df['lemma_tokens_string'] = df['lemma_tokens'].apply(lambda x: ' '.join(x))
    global id2word
    id2word = Dictionary(df['lemma_tokens'])
    global corpus
    corpus = [id2word.doc2bow(d) for d in df['lemma_tokens']]

    global umap_model
    umap_model = UMAP(n_neighbors=15,
        n_components=5,
        min_dist=0.0,
        metric='cosine',
        random_state=100)
    
    base_topic_model = BERTopic(umap_model=umap_model, language="english", calculate_probabilities=True)

    topics, probabilities = base_topic_model.fit_transform(df['lemma_tokens_string'])

    try:
        print(compute_coherence_value_bertopic(base_topic_model))
    except:
        print('huh')
        print(base_topic_model.get_topic_info())
        print('Unable to generate meaningful topics (Base BERTopic model)')

def optimized_bertopic(df):
    vectorizer_model = CountVectorizer(max_features=1_000, stop_words="english")
    optimized_topic_model = BERTopic(umap_model=umap_model, 
            language="multilingual", 
            n_gram_range=(1, 3), 
            vectorizer_model=vectorizer_model, 
            calculate_probabilities=True)

    topics, probabilities = optimized_topic_model.fit_transform(df['lemma_tokens_string'])

    try:
        print(compute_coherence_value_bertopic(optimized_topic_model))
    except:
        print('huh optimized')
        print(optimized_topic_model.get_topic_info())
        print('Unable to generate meaningful topics, base BERTopic model if possible')

    rep_docs = optimized_topic_model.representative_docs_

    global top_tweets
    top_tweets = []

    for topic in rep_docs:
        if topic == -1:
            print('test')
            continue
        topic_docs = rep_docs.get(topic)

        tweets = []
        for doc in topic_docs:
            index = df.isin([doc]).any(axis=1).idxmax()
            # print(index)
            tweets.append(df.loc[index, 'original_tweets'])
            # print(tweets)
        top_tweets.append(tweets)
    return top_tweets

global examples

def main(dataset, model, progress=gr.Progress(track_tqdm=True)):
    global df
    examples = [ "katip,katipunan",
        "bgc,bonifacio global city",
        "pobla,poblacion",
        "cubao",
        "taft"
    ]
    keyword_list = dataset.split(',')
    if len(keyword_list) > 1:
        keywords = '(' + ' OR '.join(keyword_list) + ')'
    else:
        keywords = keyword_list[0]

    if dataset in examples:
        df = get_example(keywords)
        place_data = 'test'
    else:
        print(dataset)
        place_data = str(scrape(keyword_list))
    print(df)

    if model == 'LDA':
        df = cleaning(df)
        print('doing lda')
        top_tweets = full_lda(df)
        print('done lda')
        place_data = 'test'
    else:
        df = cleaning(df)
        base_bertopic(df)
        top_tweets = optimized_bertopic(df)

    print('doing topic summarization')
    headlines = topic_summarization(top_tweets)
    headlines = '\n'.join(str(h) for h in headlines)
    print(headlines)



    return place_data


iface = gr.Interface(fn=main, 
                    inputs=[gr.Dropdown(["katip,katipunan",
                                        "bgc,bonifacio global city",
                                        "cubao",
                                        "taft",
                                        "pobla,poblacion"],
                                        label="Dataset"),
                            gr.Dropdown(["LDA", 
                                        "BERTopic"],
                                        label="Model")
                            ],
                    # examples=examples,
                    outputs="text",
                    # ["text",
                    #         "text"],
                    enable_queue=True,
                    debug=True,
)
iface.launch(debug=True, enable_queue=True)