Phi-3.5-mini-ITA / embeder.py
MarcerMM's picture
Tidy up embeder
5924313 verified
import os
from langchain.document_loaders import PyPDFLoader
from langchain.embeddings import HuggingFaceEmbeddings # Updated import per deprecation notice
from langchain.schema import Document
from langchain_community.vectorstores import FAISS
from langchain_text_splitters import CharacterTextSplitter
import re
# Path to folder containing PDFs
folder_path = "normativa"
pdf_files = [f for f in os.listdir(folder_path) if f.endswith(".pdf")]
# Load docs in folder and split text
text_splitter = CharacterTextSplitter(chunk_size = 500, chunk_overlap = 0)
documents = []
for pdf in pdf_files:
print("Loading file:", pdf)
loader = PyPDFLoader(os.path.join(folder_path, pdf))
docs = loader.load()
documents = text_splitter.split_documents(docs)
# Load the embedding model
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
# Create a FAISS index with chunk-level embeddings
faiss_index = FAISS.from_documents(documents, embedding_model)
# Save (persist) the index to disk
faiss_index.save_local("faiss_index")
print("FAISS index built and saved successfully!")