Spaces:
Sleeping
Sleeping
import streamlit as st | |
import torch | |
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification | |
# Load pre-trained model and tokenizer | |
model_name = "distilbert-base-uncased" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
# Create Streamlit app | |
st.title("Hugging Face Transformers + Streamlit Example") | |
# Define a function to use the model for prediction | |
def run_model(input_text): | |
inputs = tokenizer(input_text, return_tensors="pt") | |
outputs = model(**inputs) | |
predictions = torch.softmax(outputs.logits, dim=1) | |
return predictions | |
# Streamlit interface | |
user_input = st.text_input("Enter text:", "Type Here...") | |
if st.button("Predict"): | |
predictions = run_model(user_input) | |
st.write(f"Predictions: {predictions}") | |