TRIAL / app.py
MarwanAshraf22's picture
Create app.py
a8d8832
raw
history blame
879 Bytes
import streamlit as st
import torch
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
# Load pre-trained model and tokenizer
model_name = "distilbert-base-uncased"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
# Create Streamlit app
st.title("Hugging Face Transformers + Streamlit Example")
# Define a function to use the model for prediction
@st.cache(allow_output_mutation=True)
def run_model(input_text):
inputs = tokenizer(input_text, return_tensors="pt")
outputs = model(**inputs)
predictions = torch.softmax(outputs.logits, dim=1)
return predictions
# Streamlit interface
user_input = st.text_input("Enter text:", "Type Here...")
if st.button("Predict"):
predictions = run_model(user_input)
st.write(f"Predictions: {predictions}")