|
# LLaVA |
|
|
|
Currently this implementation supports [llava-v1.5](https://huggingface.co/liuhaotian/llava-v1.5-7b) variants, |
|
as well as llava-1.6 [llava-v1.6](https://huggingface.co/collections/liuhaotian/llava-16-65b9e40155f60fd046a5ccf2) variants. |
|
|
|
The pre-converted [7b](https://huggingface.co/mys/ggml_llava-v1.5-7b) |
|
and [13b](https://huggingface.co/mys/ggml_llava-v1.5-13b) |
|
models are available. |
|
For llava-1.6 a variety of prepared gguf models are available as well [7b-34b](https://huggingface.co/cmp-nct/llava-1.6-gguf) |
|
|
|
After API is confirmed, more models will be supported / uploaded. |
|
|
|
## Usage |
|
Build with cmake or run `make llama-llava-cli` to build it. |
|
|
|
After building, run: `./llama-llava-cli` to see the usage. For example: |
|
|
|
```sh |
|
./llama-llava-cli -m ../llava-v1.5-7b/ggml-model-f16.gguf --mmproj ../llava-v1.5-7b/mmproj-model-f16.gguf --image path/to/an/image.jpg |
|
``` |
|
|
|
**note**: A lower temperature like 0.1 is recommended for better quality. add `--temp 0.1` to the command to do so. |
|
**note**: For GPU offloading ensure to use the `-ngl` flag just like usual |
|
|
|
## LLaVA 1.5 |
|
|
|
1. Clone a LLaVA and a CLIP model ([available options](https://github.com/haotian-liu/LLaVA/blob/main/docs/MODEL_ZOO.md)). For example: |
|
|
|
```sh |
|
git clone https://huggingface.co/liuhaotian/llava-v1.5-7b |
|
|
|
git clone https://huggingface.co/openai/clip-vit-large-patch14-336 |
|
``` |
|
|
|
2. Install the required Python packages: |
|
|
|
```sh |
|
pip install -r examples/llava/requirements.txt |
|
``` |
|
|
|
3. Use `llava_surgery.py` to split the LLaVA model to LLaMA and multimodel projector constituents: |
|
|
|
```sh |
|
python ./examples/llava/llava_surgery.py -m ../llava-v1.5-7b |
|
``` |
|
|
|
4. Use `convert_image_encoder_to_gguf.py` to convert the LLaVA image encoder to GGUF: |
|
|
|
```sh |
|
python ./examples/llava/convert_image_encoder_to_gguf.py -m ../clip-vit-large-patch14-336 --llava-projector ../llava-v1.5-7b/llava.projector --output-dir ../llava-v1.5-7b |
|
``` |
|
|
|
5. Use `examples/convert_legacy_llama.py` to convert the LLaMA part of LLaVA to GGUF: |
|
|
|
```sh |
|
python ./examples/convert_legacy_llama.py ../llava-v1.5-7b --skip-unknown |
|
``` |
|
|
|
Now both the LLaMA part and the image encoder are in the `llava-v1.5-7b` directory. |
|
|
|
## LLaVA 1.6 gguf conversion |
|
1) First clone a LLaVA 1.6 model: |
|
```console |
|
git clone https://huggingface.co/liuhaotian/llava-v1.6-vicuna-7b |
|
``` |
|
|
|
2) Install the required Python packages: |
|
|
|
```sh |
|
pip install -r examples/llava/requirements.txt |
|
``` |
|
|
|
3) Use `llava_surgery_v2.py` which also supports llava-1.5 variants pytorch as well as safetensor models: |
|
```console |
|
python examples/llava/llava_surgery_v2.py -C -m ../llava-v1.6-vicuna-7b/ |
|
``` |
|
- you will find a llava.projector and a llava.clip file in your model directory |
|
|
|
4) Copy the llava.clip file into a subdirectory (like vit), rename it to pytorch_model.bin and add a fitting vit configuration to the directory: |
|
```console |
|
mkdir vit |
|
cp ../llava-v1.6-vicuna-7b/llava.clip vit/pytorch_model.bin |
|
cp ../llava-v1.6-vicuna-7b/llava.projector vit/ |
|
curl -s -q https://huggingface.co/cmp-nct/llava-1.6-gguf/raw/main/config_vit.json -o vit/config.json |
|
``` |
|
|
|
5) Create the visual gguf model: |
|
```console |
|
python ./examples/llava/convert_image_encoder_to_gguf.py -m vit --llava-projector vit/llava.projector --output-dir vit --clip-model-is-vision |
|
``` |
|
- This is similar to llava-1.5, the difference is that we tell the encoder that we are working with the pure vision model part of CLIP |
|
|
|
6) Then convert the model to gguf format: |
|
```console |
|
python ./examples/convert_legacy_llama.py ../llava-v1.6-vicuna-7b/ --skip-unknown |
|
``` |
|
|
|
7) And finally we can run the llava cli using the 1.6 model version: |
|
```console |
|
./llama-llava-cli -m ../llava-v1.6-vicuna-7b/ggml-model-f16.gguf --mmproj vit/mmproj-model-f16.gguf --image some-image.jpg -c 4096 |
|
``` |
|
|
|
**note** llava-1.6 needs more context than llava-1.5, at least 3000 is needed (just run it at -c 4096) |
|
**note** llava-1.6 greatly benefits from batched prompt processing (defaults work) |
|
|
|
## llava-cli templating and llava-1.6 prompting |
|
|
|
llava-1.5 models all use the same vicuna prompt, here you can just add your image question like `-p "Provide a full description."` |
|
For llava-1.5 models which are not vicuna (mistral and Yi) you need to adapt system prompt as well as user prompt, for this purpose llava-cli has a basic templating system: |
|
|
|
**For Mistral and using llava-cli binary:** |
|
Add this: `-p "<image>\nUSER:\nProvide a full description.\nASSISTANT:\n"` |
|
The mistral template for llava-1.6 seems to be no system print and a USER/ASSISTANT role |
|
|
|
**For the 34B this should work:** |
|
Add this: `-e -p <|im_start|>system\nAnswer the questions.<|im_end|><|im_start|>user\n<image>\nProvide a full description.<|im_end|><|im_start|>assistant\n` |
|
|
|
|
|
## How to know if you are running in llava-1.5 or llava-1.6 mode |
|
|
|
When running llava-cli you will see a visual information right before the prompt is being processed: |
|
|
|
**Llava-1.5:** |
|
`encode_image_with_clip: image embedding created: 576 tokens` |
|
|
|
**Llava-1.6 (anything above 576):** |
|
`encode_image_with_clip: image embedding created: 2880 tokens` |
|
|
|
|
|
Alternatively just pay notice to how many "tokens" have been used for your prompt, it will also show 1000+ tokens for llava-1.6 |
|
|
|
|
|
|
|
|
|
## TODO |
|
|
|
- [x] Support non-CPU backend for the image encoding part. |
|
- [ ] Support different sampling methods. |
|
- [ ] Support more model variants. |
|
|