alibicer's picture
Update app.py
cf70031 verified
raw
history blame
3.66 kB
import os
import gradio as gr
from dotenv import load_dotenv
from openai import OpenAI
from prompts.initial_prompt import INITIAL_PROMPT
from prompts.main_prompt import (
MAIN_PROMPT,
get_prompt_for_problem,
get_ccss_practice_standards,
get_problem_posing_task,
get_creativity_discussion,
get_summary,
)
# Load API key from .env file
if os.path.exists(".env"):
load_dotenv(".env")
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
client = OpenAI(api_key=OPENAI_API_KEY)
def gpt_call(history, user_message, model="gpt-4o-mini", max_tokens=512, temperature=0.7, top_p=0.95):
"""
Calls OpenAI Chat API to generate responses.
- history: [(user_text, assistant_text), ...]
- user_message: latest message from user
"""
messages = [{"role": "system", "content": MAIN_PROMPT}]
# Add history to conversation
for user_text, assistant_text in history:
if user_text:
messages.append({"role": "user", "content": user_text})
if assistant_text:
messages.append({"role": "assistant", "content": assistant_text})
messages.append({"role": "user", "content": user_message})
completion = client.chat.completions.create(
model=model,
messages=messages,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p
)
return completion.choices[0].message.content
def respond(user_message, history):
"""
Handles user input and chatbot responses.
- user_message: latest user input
- history: previous chat history
"""
if not user_message:
return "", history
# If user selects a problem number, redirect to the appropriate prompt
if user_message.strip() in ["1", "2", "3"]:
assistant_reply = get_prompt_for_problem(user_message.strip())
# If user is at reflection stage, ask about CCSS Practice Standards
elif user_message.lower().strip() == "common core":
assistant_reply = get_ccss_practice_standards()
# If user is at problem-posing stage, ask them to create a new problem
elif user_message.lower().strip() == "problem posing":
assistant_reply = get_problem_posing_task()
# If user is at creativity discussion stage, ask for their thoughts
elif user_message.lower().strip() == "creativity":
assistant_reply = get_creativity_discussion()
# If user requests a summary, provide the final learning summary
elif user_message.lower().strip() == "summary":
assistant_reply = get_summary()
else:
# Continue conversation normally with AI guidance
assistant_reply = gpt_call(history, user_message)
# Update history
history.append((user_message, assistant_reply))
return "", history
##############################
# Gradio UI Setup
##############################
with gr.Blocks() as demo:
gr.Markdown("## AI-Guided Math PD Chatbot")
# Initialize chatbot with first message
chatbot = gr.Chatbot(
value=[("", INITIAL_PROMPT)], # Initial system message
height=500
)
# Maintain chat history state
state_history = gr.State([("", INITIAL_PROMPT)])
# User input box
user_input = gr.Textbox(
placeholder="Type your message here...",
label="Your Input"
)
# Submit button
user_input.submit(
respond,
inputs=[user_input, state_history],
outputs=[user_input, chatbot]
).then(
fn=lambda _, h: h,
inputs=[user_input, chatbot],
outputs=[state_history]
)
# Launch app
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860, share=True)