File size: 5,371 Bytes
d5099ea
47a0e90
d5099ea
 
 
47a0e90
d5099ea
 
 
47a0e90
d5099ea
 
 
 
 
 
 
47a0e90
 
 
 
 
d5099ea
 
47a0e90
 
d5099ea
47a0e90
 
 
 
 
 
d5099ea
47a0e90
d5099ea
47a0e90
 
 
 
 
 
 
d5099ea
47a0e90
 
 
 
 
 
 
 
 
 
 
 
d5099ea
47a0e90
 
 
 
 
 
 
d5099ea
47a0e90
 
 
 
 
 
 
 
 
 
 
d5099ea
47a0e90
 
 
 
 
 
 
d5099ea
47a0e90
 
 
 
 
 
 
 
 
 
 
 
 
d5099ea
47a0e90
 
 
 
 
 
 
d5099ea
47a0e90
 
 
 
 
 
 
 
 
 
 
d5099ea
47a0e90
 
 
 
 
 
 
 
d5099ea
47a0e90
 
 
 
 
 
 
 
 
 
 
d5099ea
47a0e90
 
 
 
 
 
 
d5099ea
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
# prompts/main_prompt.py

__all__ = ["TASK_PROMPT", "BAR_MODEL_PROMPT", "DOUBLE_NUMBER_LINE_PROMPT", 
           "RATIO_TABLE_PROMPT", "GRAPH_PROMPT", "REFLECTION_PROMPT",
           "SUMMARY_PROMPT", "FINAL_REFLECTION_PROMPT"]

# ๐ŸŸข STARTING WITH TASK
TASK_PROMPT = """
๐Ÿš€ **Welcome to Module 2: Solving a Ratio Problem Using Multiple Representations!**  

### **Task:**
Jessica drives **90 miles in 2 hours**. If she drives at the same rate, **how far does she travel in:**  
- **1 hour?**  
- **ยฝ hour?**  
- **3 hours?**  

To solve this, try using different representations:  
โœ… **Bar models**  
โœ… **Double number lines**  
โœ… **Ratio tables**  
โœ… **Graphs**  

๐Ÿ’ก **Goal:** Don't just find the answerโ€”**explain why**!  
๐Ÿ’ฌ I'll guide you step by stepโ€”letโ€™s start with the **bar model!**
"""

# ๐Ÿ“Š Bar Model Prompt
BAR_MODEL_PROMPT = """
๐Ÿ“Š **Step 1: Bar Model Representation**  

Imagine a **bar** representing 90 milesโ€”the distance Jessica travels in **2 hours**.  
๐Ÿงฉ How might you divide this bar to explore the distances for **1 hour, ยฝ hour, and 3 hours**?  

๐Ÿ’ญ *Explain how each section of your bar relates to these time intervals!*  

๐Ÿ”น **Hints if needed:**  
1๏ธโƒฃ *Think of the entire bar as representing **90 miles in 2 hours**. How would you divide it into two equal parts to find 1 hour?*  
2๏ธโƒฃ *Now, extend or divide it furtherโ€”what happens for **ยฝ hour and 3 hours**?*  

โœ… If correct: *Great! Can you explain why this model helps students visualize proportional relationships?*  
โŒ If incorrect: *Try dividing the bar into two equal sections. What does each section represent?*  
"""

# ๐Ÿ“ Double Number Line Prompt
DOUBLE_NUMBER_LINE_PROMPT = """
๐Ÿ“ **Step 2: Double Number Line Representation**  

Now, letโ€™s use a **double number line**!  
๐Ÿ“Œ **Create two parallel lines**: one for **time (hours)** and one for **distance (miles)**.  

Start by marking:  
โณ **0 and 2 hours** on the top line  
๐Ÿš— **0 and 90 miles** on the bottom line  

What comes next?  

๐Ÿ”น **Hints if needed:**  
1๏ธโƒฃ Try labeling the time line **(0, 1, 2, 3)**. How does that help with placing distances below?  
2๏ธโƒฃ Since **2 hours = 90 miles**, what does that tell you about **1 hour and ยฝ hour**?  

โœ… If correct: *Nice work! How does this help students understand proportional relationships?*  
โŒ If incorrect: *Check your spacingโ€”does your number line keep a constant rate?*  
"""

# ๐Ÿ“‹ Ratio Table Prompt
RATIO_TABLE_PROMPT = """
๐Ÿ“‹ **Step 3: Ratio Table Representation**  

Next, letโ€™s create a **ratio table**!  
๐Ÿ“ Make a table with:  
๐Ÿ“Œ **Column 1:** Time (hours)  
๐Ÿ“Œ **Column 2:** Distance (miles)  

You already know **2 hours = 90 miles**.  
๐Ÿค” How would you complete the table for **ยฝ hour, 1 hour, and 3 hours**?  

๐Ÿ”น **Hints if needed:**  
1๏ธโƒฃ Since **2 hours = 90 miles**, how can you divide this to find **1 hour**?  
2๏ธโƒฃ Once you know **1 hour = 45 miles**, can you calculate for **ยฝ hour and 3 hours**?  

โœ… If correct: *Well done! How might this help students compare proportional relationships?*  
โŒ If incorrect: *Somethingโ€™s a little off. Try using unit rate: 90 รท 2 = ?*  
"""

# ๐Ÿ“‰ Graph Prompt
GRAPH_PROMPT = """
๐Ÿ“‰ **Step 4: Graph Representation**  

Now, letโ€™s **graph this problem**!  
๐Ÿ›  **Plot:**  
๐Ÿ“Œ **Time (hours) on the x-axis**  
๐Ÿ“Œ **Distance (miles) on the y-axis**  

You already know two key points:  
๐Ÿ”น **(0,0) and (2,90)**  

๐Ÿค” What other points will you add?  

๐Ÿ”น **Hints if needed:**  
1๏ธโƒฃ Start by marking **(0,0) and (2,90)**.  
2๏ธโƒฃ How can you use these to find **(1,45), (ยฝ,22.5), and (3,135)?**  

โœ… If correct: *Fantastic! How does this graph reinforce the idea of constant rate and proportionality?*  
โŒ If incorrect: *Does your line pass through (0,0)? Why is that important?*  
"""

# ๐Ÿ”„ Reflection Prompt
REFLECTION_PROMPT = """
๐Ÿ”„ **Reflection Time!**  

Now that you've explored **multiple representations**, think about these questions:  
๐Ÿ’ก How does each method highlight **proportional reasoning differently**?  
๐Ÿ’ฌ Which representation do you prefer, and why?  
๐Ÿš€ Can you think of a situation where one of these representations **wouldnโ€™t** be the best choice?  

Take a moment to reflect! ๐Ÿ˜Š  
"""

# ๐ŸŽฏ Summary Prompt
SUMMARY_PROMPT = """
๐ŸŽฏ **Summary of Module 2**  

๐Ÿ“Œ **In this module, you:**  
โœ… Solved a proportional reasoning problem using **multiple representations**  
โœ… Explored how different models highlight proportional relationships  
โœ… Reflected on teaching strategies aligned with **Common Core practices**  

๐Ÿ“ **Final Task:** Try creating a **similar proportional reasoning problem**!  
Example: A **runner covers a certain distance in a given time**.  

๐Ÿ’ก Make sure your problem can be solved using:  
โœ… **Bar models**  
โœ… **Double number lines**  
โœ… **Ratio tables**  
โœ… **Graphs**  

๐Ÿ“ข *The AI will evaluate your problem and provide feedback!*  
"""

# ๐Ÿš€ Final Reflection Prompt
FINAL_REFLECTION_PROMPT = """
๐Ÿš€ **Final Reflection**  

- How does designing and solving problems using **multiple representations** enhance studentsโ€™ mathematical creativity?  
- How would you guide students to explain their **reasoning**, even if they get the correct answer?  

๐Ÿ“Œ Share your thoughts!  
"""