Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,14 +2,41 @@ import os
|
|
2 |
import cv2
|
3 |
import gradio as gr
|
4 |
import torch
|
5 |
-
|
6 |
-
from gfpgan.utils import GFPGANer
|
7 |
-
from realesrgan.utils import RealESRGANer
|
8 |
|
9 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
os.system("pip install --upgrade 'numpy<2'")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
# Download necessary model weights
|
13 |
weights = {
|
14 |
"realesr-general-x4v3.pth": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth",
|
15 |
"GFPGANv1.2.pth": "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.2.pth",
|
@@ -19,38 +46,79 @@ weights = {
|
|
19 |
"CodeFormer.pth": "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/CodeFormer.pth",
|
20 |
}
|
21 |
|
22 |
-
for
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
#
|
27 |
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
|
28 |
model_path = 'realesr-general-x4v3.pth'
|
29 |
-
half =
|
30 |
-
upsampler = RealESRGANer(
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
os.makedirs('output', exist_ok=True)
|
33 |
|
34 |
-
#
|
|
|
|
|
|
|
35 |
def inference(img, version, scale):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
try:
|
|
|
37 |
img_path = str(img)
|
38 |
extension = os.path.splitext(os.path.basename(img_path))[1]
|
39 |
img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED)
|
|
|
|
|
|
|
40 |
|
|
|
41 |
if len(img.shape) == 3 and img.shape[2] == 4:
|
42 |
img_mode = 'RGBA'
|
43 |
elif len(img.shape) == 2:
|
44 |
-
|
45 |
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
|
|
46 |
else:
|
47 |
img_mode = None
|
48 |
|
|
|
49 |
h, w = img.shape[:2]
|
50 |
if h < 300:
|
51 |
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)
|
52 |
|
53 |
-
#
|
54 |
model_paths = {
|
55 |
'v1.2': 'GFPGANv1.2.pth',
|
56 |
'v1.3': 'GFPGANv1.3.pth',
|
@@ -60,62 +128,73 @@ def inference(img, version, scale):
|
|
60 |
'RealESR-General-x4v3': 'realesr-general-x4v3.pth'
|
61 |
}
|
62 |
|
|
|
63 |
face_enhancer = GFPGANer(
|
64 |
model_path=model_paths[version],
|
65 |
-
upscale=2,
|
66 |
arch='clean' if version.startswith('v1') else version,
|
67 |
channel_multiplier=2,
|
68 |
-
bg_upsampler=upsampler
|
69 |
)
|
70 |
|
71 |
-
|
|
|
|
|
|
|
72 |
|
|
|
73 |
if scale != 2:
|
74 |
interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4
|
75 |
-
h, w =
|
76 |
output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation)
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
extension = 'jpg'
|
82 |
|
83 |
-
|
84 |
cv2.imwrite(save_path, output)
|
85 |
-
|
|
|
86 |
|
87 |
-
return
|
88 |
|
89 |
except Exception as error:
|
90 |
-
print("Error:", error)
|
91 |
return None, None
|
92 |
|
93 |
-
#
|
|
|
|
|
|
|
94 |
with gr.Blocks() as demo:
|
95 |
gr.Markdown("## 📸 Image Upscaling & Restoration")
|
96 |
-
gr.Markdown("### Enhance
|
97 |
|
98 |
with gr.Row():
|
99 |
with gr.Column():
|
100 |
-
image_input = gr.Image(type="filepath", label="Upload Image")
|
101 |
version_selector = gr.Radio(
|
102 |
-
['v1.2', 'v1.3', 'v1.4', 'RestoreFormer', 'CodeFormer', 'RealESR-General-x4v3'],
|
103 |
-
label="Model Version",
|
104 |
value="v1.4"
|
105 |
)
|
106 |
-
scale_factor = gr.Number(value=2, label="Rescaling Factor")
|
107 |
-
|
108 |
enhance_button = gr.Button("Enhance Image 🚀")
|
109 |
-
|
110 |
with gr.Column():
|
111 |
-
output_image = gr.Image(type="numpy", label="Enhanced
|
112 |
download_link = gr.File(label="Download Enhanced Image")
|
113 |
|
|
|
114 |
enhance_button.click(
|
115 |
fn=inference,
|
116 |
inputs=[image_input, version_selector, scale_factor],
|
117 |
outputs=[output_image, download_link]
|
118 |
)
|
119 |
|
120 |
-
#
|
|
|
|
|
|
|
121 |
demo.launch()
|
|
|
|
2 |
import cv2
|
3 |
import gradio as gr
|
4 |
import torch
|
5 |
+
import requests
|
|
|
|
|
6 |
|
7 |
+
# ------------------------------------------------------------------------------
|
8 |
+
# Dependency Management
|
9 |
+
# ------------------------------------------------------------------------------
|
10 |
+
|
11 |
+
# Instead of using os.system to manage dependencies in production,
|
12 |
+
# it's recommended to use a requirements.txt file.
|
13 |
+
# For this demo, we ensure that numpy and torchvision are of compatible versions.
|
14 |
os.system("pip install --upgrade 'numpy<2'")
|
15 |
+
os.system("pip install torchvision==0.12.0") # Fixes: ModuleNotFoundError for torchvision.transforms.functional_tensor
|
16 |
+
|
17 |
+
# ------------------------------------------------------------------------------
|
18 |
+
# Utility Function: Download Weight Files
|
19 |
+
# ------------------------------------------------------------------------------
|
20 |
+
|
21 |
+
def download_file(filename, url):
|
22 |
+
"""
|
23 |
+
ELI5: If the file (like a model weight) isn't on your computer, download it!
|
24 |
+
"""
|
25 |
+
if not os.path.exists(filename):
|
26 |
+
print(f"Downloading {filename} from {url}...")
|
27 |
+
response = requests.get(url, stream=True)
|
28 |
+
if response.status_code == 200:
|
29 |
+
with open(filename, 'wb') as f:
|
30 |
+
for chunk in response.iter_content(chunk_size=8192):
|
31 |
+
if chunk:
|
32 |
+
f.write(chunk)
|
33 |
+
else:
|
34 |
+
print(f"Failed to download {filename}")
|
35 |
+
|
36 |
+
# ------------------------------------------------------------------------------
|
37 |
+
# Download Required Model Weights
|
38 |
+
# ------------------------------------------------------------------------------
|
39 |
|
|
|
40 |
weights = {
|
41 |
"realesr-general-x4v3.pth": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth",
|
42 |
"GFPGANv1.2.pth": "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.2.pth",
|
|
|
46 |
"CodeFormer.pth": "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/CodeFormer.pth",
|
47 |
}
|
48 |
|
49 |
+
for filename, url in weights.items():
|
50 |
+
download_file(filename, url)
|
51 |
+
|
52 |
+
# ------------------------------------------------------------------------------
|
53 |
+
# Import Model-Related Modules After Ensuring Dependencies
|
54 |
+
# ------------------------------------------------------------------------------
|
55 |
+
|
56 |
+
from basicsr.archs.srvgg_arch import SRVGGNetCompact
|
57 |
+
from gfpgan.utils import GFPGANer
|
58 |
+
from realesrgan.utils import RealESRGANer
|
59 |
+
|
60 |
+
# ------------------------------------------------------------------------------
|
61 |
+
# Initialize ESRGAN Upsampler
|
62 |
+
# ------------------------------------------------------------------------------
|
63 |
|
64 |
+
# ELI5: We build a mini brain (model) to help make images look better.
|
65 |
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
|
66 |
model_path = 'realesr-general-x4v3.pth'
|
67 |
+
half = torch.cuda.is_available() # Use half-precision if you have a GPU.
|
68 |
+
upsampler = RealESRGANer(
|
69 |
+
scale=4,
|
70 |
+
model_path=model_path,
|
71 |
+
model=model,
|
72 |
+
tile=0,
|
73 |
+
tile_pad=10,
|
74 |
+
pre_pad=0,
|
75 |
+
half=half
|
76 |
+
)
|
77 |
+
|
78 |
+
# Create output directory for saving enhanced images.
|
79 |
os.makedirs('output', exist_ok=True)
|
80 |
|
81 |
+
# ------------------------------------------------------------------------------
|
82 |
+
# Image Inference Function
|
83 |
+
# ------------------------------------------------------------------------------
|
84 |
+
|
85 |
def inference(img, version, scale):
|
86 |
+
"""
|
87 |
+
ELI5: This function takes your uploaded image, picks a model version,
|
88 |
+
and a scaling factor. It then:
|
89 |
+
1. Reads your image.
|
90 |
+
2. Checks if it's in a special format (like with transparency).
|
91 |
+
3. Resizes small images for better processing.
|
92 |
+
4. Uses a face enhancement model (GFPGAN) and a background upscaler (RealESRGAN)
|
93 |
+
to make the image look better.
|
94 |
+
5. Optionally resizes the final image.
|
95 |
+
6. Saves and returns the enhanced image.
|
96 |
+
"""
|
97 |
try:
|
98 |
+
# Read the image from the provided file path.
|
99 |
img_path = str(img)
|
100 |
extension = os.path.splitext(os.path.basename(img_path))[1]
|
101 |
img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED)
|
102 |
+
if img is None:
|
103 |
+
print("Error: Could not read the image. Please check the file.")
|
104 |
+
return None, None
|
105 |
|
106 |
+
# Determine the image mode: RGBA (has transparency) or not.
|
107 |
if len(img.shape) == 3 and img.shape[2] == 4:
|
108 |
img_mode = 'RGBA'
|
109 |
elif len(img.shape) == 2:
|
110 |
+
# If the image is grayscale, convert it to a color image.
|
111 |
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
112 |
+
img_mode = None
|
113 |
else:
|
114 |
img_mode = None
|
115 |
|
116 |
+
# If the image is too small, double its size.
|
117 |
h, w = img.shape[:2]
|
118 |
if h < 300:
|
119 |
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)
|
120 |
|
121 |
+
# Map the selected model version to its weight file.
|
122 |
model_paths = {
|
123 |
'v1.2': 'GFPGANv1.2.pth',
|
124 |
'v1.3': 'GFPGANv1.3.pth',
|
|
|
128 |
'RealESR-General-x4v3': 'realesr-general-x4v3.pth'
|
129 |
}
|
130 |
|
131 |
+
# Initialize GFPGAN for face enhancement.
|
132 |
face_enhancer = GFPGANer(
|
133 |
model_path=model_paths[version],
|
134 |
+
upscale=2, # Face region upscale factor.
|
135 |
arch='clean' if version.startswith('v1') else version,
|
136 |
channel_multiplier=2,
|
137 |
+
bg_upsampler=upsampler # Use the ESRGAN upsampler for background.
|
138 |
)
|
139 |
|
140 |
+
# Enhance the image.
|
141 |
+
_, _, output = face_enhancer.enhance(
|
142 |
+
img, has_aligned=False, only_center_face=False, paste_back=True
|
143 |
+
)
|
144 |
|
145 |
+
# Optionally, further rescale the enhanced image.
|
146 |
if scale != 2:
|
147 |
interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4
|
148 |
+
h, w = output.shape[:2]
|
149 |
output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation)
|
150 |
|
151 |
+
# Decide on file extension based on image mode.
|
152 |
+
extension = 'png' if img_mode == 'RGBA' else 'jpg'
|
153 |
+
save_path = os.path.join('output', f'out.{extension}')
|
|
|
154 |
|
155 |
+
# Save the enhanced image.
|
156 |
cv2.imwrite(save_path, output)
|
157 |
+
# Convert BGR to RGB for proper display in Gradio.
|
158 |
+
output_rgb = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
|
159 |
|
160 |
+
return output_rgb, save_path
|
161 |
|
162 |
except Exception as error:
|
163 |
+
print("Error during inference:", error)
|
164 |
return None, None
|
165 |
|
166 |
+
# ------------------------------------------------------------------------------
|
167 |
+
# Build the Gradio UI
|
168 |
+
# ------------------------------------------------------------------------------
|
169 |
+
|
170 |
with gr.Blocks() as demo:
|
171 |
gr.Markdown("## 📸 Image Upscaling & Restoration")
|
172 |
+
gr.Markdown("### Enhance your images using GFPGAN & RealESRGAN with a friendly UI!")
|
173 |
|
174 |
with gr.Row():
|
175 |
with gr.Column():
|
176 |
+
image_input = gr.Image(type="filepath", label="Upload Your Image")
|
177 |
version_selector = gr.Radio(
|
178 |
+
choices=['v1.2', 'v1.3', 'v1.4', 'RestoreFormer', 'CodeFormer', 'RealESR-General-x4v3'],
|
179 |
+
label="Select Model Version",
|
180 |
value="v1.4"
|
181 |
)
|
182 |
+
scale_factor = gr.Number(value=2, label="Rescaling Factor (e.g., 2 for default)")
|
|
|
183 |
enhance_button = gr.Button("Enhance Image 🚀")
|
|
|
184 |
with gr.Column():
|
185 |
+
output_image = gr.Image(type="numpy", label="Enhanced Image")
|
186 |
download_link = gr.File(label="Download Enhanced Image")
|
187 |
|
188 |
+
# Link the button click to the inference function.
|
189 |
enhance_button.click(
|
190 |
fn=inference,
|
191 |
inputs=[image_input, version_selector, scale_factor],
|
192 |
outputs=[output_image, download_link]
|
193 |
)
|
194 |
|
195 |
+
# ------------------------------------------------------------------------------
|
196 |
+
# Launch the Gradio App
|
197 |
+
# ------------------------------------------------------------------------------
|
198 |
+
|
199 |
demo.launch()
|
200 |
+
|