MattStammers commited on
Commit
22760f4
·
1 Parent(s): 6fc553a

Delete streamlit_app_asdm.py

Browse files
Files changed (1) hide show
  1. streamlit_app_asdm.py +0 -57
streamlit_app_asdm.py DELETED
@@ -1,57 +0,0 @@
1
- import pandas as pd
2
- import streamlit as st
3
- import plotly.graph_objects as go
4
- from ASDM.ASDM import Structure
5
-
6
- def load_model(model_path):
7
- try:
8
- model = Structure(from_xmile=model_path)
9
- except FileNotFoundError:
10
- st.error(f"File {model_path} not found.")
11
- return None
12
- return model
13
-
14
- def run_simulation(model, simulation_time, re_investment):
15
- model.sim_specs['initial_time'] = 0
16
- model.sim_specs['current_time'] = 0
17
- model.sim_specs['dt'] = 1
18
- model.sim_specs['simulation_time'] = simulation_time
19
- model.sim_specs['time_units'] = 'Months'
20
-
21
- model.clear_last_run()
22
-
23
- model.aux_equations['percentageOfSavingsSpentOnCessation'] = str(re_investment)
24
-
25
- model.simulate()
26
-
27
- results = model.export_simulation_result()
28
- results_df = pd.DataFrame.from_dict(results)
29
-
30
- columns_to_plot = ["Current_smokers", "Ex_smokers", "Ex_smokers_starting_again"]
31
- return results_df['Months'], results_df[columns_to_plot]
32
-
33
- st.title('Smoking Cessation')
34
-
35
- st.markdown("""
36
- This simulation estimates the effects of various reinvestment levels in a smoking cessation service within a population of 900 smokers.
37
- By varying the proportion of savings that are reinvested into the service, we can observe different outcomes in terms of current smokers, ex-smokers,
38
- and ex-smokers who start smoking again over time.
39
- """)
40
-
41
- st.subheader('Slide the Slider to Vary Re-Investment Levels')
42
-
43
- model = load_model('models/smoking cessation demo.stmx')
44
-
45
- if model is not None:
46
- re_investment = st.slider("Proportion of Savings Spent on Cessation", 0, 100, 45)
47
- simulation_time = st.slider("Select the number of months to simulate:", min_value=1, max_value=36, value=24)
48
-
49
- x_values, y_values = run_simulation(model, simulation_time, re_investment)
50
-
51
- st.subheader('Effects of Re-Investment on Smoking Levels')
52
-
53
- fig = go.Figure()
54
- for column in y_values.columns:
55
- fig.add_trace(go.Scatter(x=x_values, y=y_values[column], mode='lines', name=column))
56
- fig.update_layout(xaxis_title='Months', yaxis_title='Number of Smokers', autosize=False, width=800, height=500)
57
- st.plotly_chart(fig)