Spaces:
Sleeping
Sleeping
Commit
·
b3b327d
1
Parent(s):
fbdaedd
Fix missing comma
Browse files
app.py
CHANGED
@@ -1,8 +1,14 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
2 |
|
|
|
3 |
model_card = "microsoft/mdeberta-v3-base"
|
4 |
finetuned_model = "MatteoFasulo/mdeberta-v3-base-subjectivity-sentiment-multilingual"
|
5 |
|
|
|
6 |
class CustomModel(PreTrainedModel):
|
7 |
config_class = DebertaV2Config
|
8 |
|
@@ -32,6 +38,7 @@ class CustomModel(PreTrainedModel):
|
|
32 |
|
33 |
return {'logits': logits}
|
34 |
|
|
|
35 |
def load_tokenizer(model_name: str):
|
36 |
return AutoTokenizer.from_pretrained(model_name)
|
37 |
|
@@ -52,11 +59,13 @@ def load_model(model_card: str, finetuned_model: str):
|
|
52 |
|
53 |
return model
|
54 |
|
|
|
55 |
def get_sentiment_values(text: str):
|
56 |
pipe = pipeline("sentiment-analysis", model="cardiffnlp/twitter-xlm-roberta-base-sentiment", tokenizer="cardiffnlp/twitter-xlm-roberta-base-sentiment", top_k=None)
|
57 |
sentiments = pipe(text)[0]
|
58 |
return {k:v for k,v in [(list(sentiment.values())[0], list(sentiment.values())[1]) for sentiment in sentiments]}
|
59 |
|
|
|
60 |
def predict_subjectivity(text):
|
61 |
sentiment_values = get_sentiment_values(text)
|
62 |
|
@@ -73,6 +82,7 @@ def predict_subjectivity(text):
|
|
73 |
|
74 |
return predicted_class
|
75 |
|
|
|
76 |
demo = gr.Interface(
|
77 |
fn=predict_subjectivity,
|
78 |
inputs=gr.Textbox(
|
@@ -85,8 +95,9 @@ demo = gr.Interface(
|
|
85 |
info="Whether the sentence is subjective or objective."
|
86 |
),
|
87 |
title='Subjectivity Detection',
|
88 |
-
description='Detect if a sentence is subjective or objective using a pre-trained model.'
|
89 |
theme='huggingface',
|
90 |
)
|
91 |
|
|
|
92 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import DebertaV2Model, DebertaV2Config, AutoTokenizer, PreTrainedModel, ContextPooler
|
4 |
+
from transformers import pipeline
|
5 |
+
import torch.nn as nn
|
6 |
|
7 |
+
# Define the model and tokenizer
|
8 |
model_card = "microsoft/mdeberta-v3-base"
|
9 |
finetuned_model = "MatteoFasulo/mdeberta-v3-base-subjectivity-sentiment-multilingual"
|
10 |
|
11 |
+
# Custom model class for combining sentiment analysis with subjectivity detection
|
12 |
class CustomModel(PreTrainedModel):
|
13 |
config_class = DebertaV2Config
|
14 |
|
|
|
38 |
|
39 |
return {'logits': logits}
|
40 |
|
41 |
+
# Load the pre-trained tokenizer
|
42 |
def load_tokenizer(model_name: str):
|
43 |
return AutoTokenizer.from_pretrained(model_name)
|
44 |
|
|
|
59 |
|
60 |
return model
|
61 |
|
62 |
+
# Get sentiment values using a pre-trained sentiment analysis model
|
63 |
def get_sentiment_values(text: str):
|
64 |
pipe = pipeline("sentiment-analysis", model="cardiffnlp/twitter-xlm-roberta-base-sentiment", tokenizer="cardiffnlp/twitter-xlm-roberta-base-sentiment", top_k=None)
|
65 |
sentiments = pipe(text)[0]
|
66 |
return {k:v for k,v in [(list(sentiment.values())[0], list(sentiment.values())[1]) for sentiment in sentiments]}
|
67 |
|
68 |
+
# Predict the subjectivity of a sentence
|
69 |
def predict_subjectivity(text):
|
70 |
sentiment_values = get_sentiment_values(text)
|
71 |
|
|
|
82 |
|
83 |
return predicted_class
|
84 |
|
85 |
+
# Create a Gradio interface
|
86 |
demo = gr.Interface(
|
87 |
fn=predict_subjectivity,
|
88 |
inputs=gr.Textbox(
|
|
|
95 |
info="Whether the sentence is subjective or objective."
|
96 |
),
|
97 |
title='Subjectivity Detection',
|
98 |
+
description='Detect if a sentence is subjective or objective using a pre-trained model.',
|
99 |
theme='huggingface',
|
100 |
)
|
101 |
|
102 |
+
# Launch the interface
|
103 |
demo.launch()
|