File size: 10,031 Bytes
0099d95
f0feabf
498d80c
1ad1813
739823d
0bddb91
 
 
e2931d4
0bddb91
 
 
 
e2931d4
ae6b74a
e2931d4
0bddb91
 
e2931d4
 
 
0bddb91
 
 
a367f3a
 
479cb13
0bddb91
 
e2931d4
c5c3f69
 
479cb13
c5c3f69
 
e2931d4
 
 
c5c3f69
e2931d4
0bddb91
2cd7197
 
 
 
 
 
 
 
ae6b74a
 
 
 
 
 
e2931d4
 
0bddb91
e2931d4
0bddb91
 
 
 
 
 
ae6b74a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca240c1
ae6b74a
 
 
ca240c1
 
 
 
ae6b74a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca240c1
 
ae6b74a
 
 
 
 
 
 
ca240c1
 
ae6b74a
 
 
 
 
 
 
 
 
146c720
 
ae6b74a
 
 
 
0bddb91
ae6b74a
e2931d4
0bddb91
e2931d4
11c5c73
0bddb91
ae6b74a
 
 
146c720
ae6b74a
e2931d4
 
 
 
 
146c720
 
 
0bddb91
 
 
 
 
11c5c73
0bddb91
11c5c73
e2931d4
0bddb91
e2931d4
0bddb91
 
e2931d4
ae6b74a
 
 
0bddb91
 
 
 
 
 
e2931d4
 
 
 
 
 
 
0bddb91
e2931d4
9391fe6
 
 
 
0bddb91
 
 
 
 
 
e2931d4
 
 
 
 
 
 
 
479cb13
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import os
import time
import random
import asyncio
import json
from fastapi import FastAPI, HTTPException, Depends
from fastapi.middleware.cors import CORSMiddleware
from fastapi.security.api_key import APIKeyHeader
from pydantic import BaseModel
from typing import List, Optional
from dotenv import load_dotenv
from starlette.responses import StreamingResponse
from openai import OpenAI
from typing import List, Optional, Dict, Any
import copy

load_dotenv()

BASE_URL = "https://generativelanguage.googleapis.com/v1beta/openai/"
EXPECTED_API_KEY = os.getenv("API_HUGGINGFACE")
API_KEY_NAME = "Authorization"
API_KEYS = [
    os.getenv("API_GEMINI_1"),
    os.getenv("API_GEMINI_2"),
    os.getenv("API_GEMINI_3"), 
    os.getenv("API_GEMINI_4"), 
    os.getenv("API_GEMINI_5"), 
]

# Classi Pydantic di VALIDAZIONE Body
class ChatCompletionRequest(BaseModel):
    model: str = "gemini-2.0-flash" 
    messages: Optional[Any]
    temperature: Optional[float] = 0.8
    stream: Optional[bool] = False
    stream_options: Optional[Dict[str, Any]] = None
    class Config:
        extra = "allow"

# Server FAST API 
app = FastAPI(title="OpenAI-SDK-compatible API", version="1.0.0", description="Un wrapper FastAPI compatibile con le specifiche dell'API OpenAI.")
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Client OpenAI
def get_openai_client():
    ''' Client OpenAI passando in modo RANDOM le Chiavi API. In questo modo posso aggirare i limiti "Quota Exceeded" '''
    api_key = random.choice(API_KEYS)
    return OpenAI(api_key=api_key, base_url=BASE_URL)

# Validazione API       
api_key_header = APIKeyHeader(name=API_KEY_NAME, auto_error=False)
def verify_api_key(api_key: str = Depends(api_key_header)):
    ''' Validazione Chiave API - Per ora in ENV, Token HF '''
    if not api_key:
        raise HTTPException(status_code=403, detail="API key mancante")
    if api_key != f"Bearer {EXPECTED_API_KEY}":
        raise HTTPException(status_code=403, detail="API key non valida")
    return api_key

# Correzione payload con content=None
def sanitize_messages(messages):
    """Convert None content to empty string to avoid Gemini API errors"""
    if not messages:
        return messages
    for message in messages:
        if message.get('content') is None:
            message['content'] = " "
    return messages

# Funzione per conversione Payload OpenAI to GEMINI (anomalia per ACTION) AnyOf, e property: {}
def convert_openai_schema_for_gemini(tools_schema):
    if isinstance(tools_schema, str):
        try:
            tools_schema = json.loads(tools_schema)
        except json.JSONDecodeError:
            raise ValueError("Stringa JSON non valida fornita")
    converted_schema = []
    for tool in tools_schema:
        if tool.get("type") != "function":
            converted_schema.append(tool)
            continue
        converted_tool = {"type": "function", "function": {}}
        func_def = tool.get("function", {})
        if not func_def:
            continue
        converted_tool["function"]["name"] = func_def.get("name", "")
        converted_tool["function"]["description"] = func_def.get("description", "")
        if "parameters" in func_def:
            params = func_def["parameters"]
            converted_params = {"type": "object"}
            if "properties" in params:
                converted_properties = {}
                for prop_name, prop_value in params["properties"].items():
                    cleaned = clean_schema_property(prop_value)
                    if cleaned:  
                        converted_properties[prop_name] = cleaned
                if converted_properties:
                    converted_params["properties"] = converted_properties
                else:
                    converted_params["properties"] = {"parameter": {"type": "string"}}
            else:
                converted_params["properties"] = {"parameter": {"type": "string"}}
            if "required" in params:
                converted_params["required"] = params["required"]
            converted_tool["function"]["parameters"] = converted_params
        converted_schema.append(converted_tool)
    return converted_schema

def clean_schema_property(prop):
    if not isinstance(prop, dict):
        return prop
    result = {}
    for key, value in prop.items():
        if key in ("title", "default"):
            continue
        elif key == "anyOf":
            if isinstance(value, list):
                for item in value:
                    if isinstance(item, dict) and item.get("type") != "null":
                        cleaned_item = clean_schema_property(item)
                        for k, v in cleaned_item.items():
                            if k not in result:
                                result[k] = v
                        break
        elif key == "oneOf":
            if isinstance(value, list) and len(value) > 0:
                cleaned_item = clean_schema_property(value[0])
                for k, v in cleaned_item.items():
                    if k not in result:
                        result[k] = v
            elif isinstance(value, dict):
                cleaned_item = clean_schema_property(value)
                for k, v in cleaned_item.items():
                    if k not in result:
                        result[k] = v
        elif key == "properties" and isinstance(value, dict):
            new_props = {}
            for prop_name, prop_value in value.items():
                cleaned_prop = clean_schema_property(prop_value)
                if cleaned_prop:
                    new_props[prop_name] = cleaned_prop
            if not new_props:
                new_props = {"parameter": {"type": "string"}}
            result[key] = new_props
        elif key == "items" and isinstance(value, dict):
            result[key] = clean_schema_property(value)
        elif isinstance(value, list):
            result[key] = [clean_schema_property(item) if isinstance(item, dict) else item for item in value]
        else:
            result[key] = value
    if result.get("type") == "object" and ("properties" not in result or not result["properties"]):
        result["properties"] = {"parameter": {"type": "string"}}
    return result

def convert_payload_for_gemini(payload: ChatCompletionRequest):
    if hasattr(payload, "model_dump"):
        payload_converted = json.loads(payload.model_dump_json())
    elif isinstance(payload, dict):
        payload_converted = payload.copy()
    else:
        raise ValueError("Formato payload non supportato")
    payload_converted.pop("metadata", None)
    payload_converted.pop("store", None)
    if "tools" in payload_converted:
        payload_converted["tools"] = convert_openai_schema_for_gemini(payload_converted["tools"])
    new_payload = ChatCompletionRequest.model_validate(payload_converted)
    return new_payload

# ---------------------------------- Funzioni per Chat Completion ---------------------------------------
# Chiama API (senza Streaming)
def call_api_sync(params: ChatCompletionRequest):
    ''' Chiamata API senza streaming. Se da errore 429 lo rifa'''
    try:
        client = get_openai_client()
        if params.messages:
            params.messages = sanitize_messages(params.messages)       
        params = convert_payload_for_gemini(params)
        print('------------------------------------- INPUT --------------------------------')
        print(params)
        response_format = getattr(params, 'response_format', None)
        if response_format and getattr(response_format, 'type', None) == 'json_schema':    
            response = client.beta.chat.completions.parse(**params.model_dump())
        else:
            response = client.chat.completions.create(**params.model_dump())
        print('------------------------------------- OUTPUT -------------------------------')
        print(response)
        print("")
        return response
    except Exception as e:
        if "429" in str(e):
            time.sleep(2)
            return call_api_sync(params)
        else:
            raise e

# Chiama API (con Streaming)
async def _resp_async_generator(params: ChatCompletionRequest):
    ''' Chiamata API con streaming. Se da errore 429 lo rifa'''
    client = get_openai_client()
    try:
        response = client.chat.completions.create(**params.model_dump())
        if params.messages:
            params.messages = sanitize_messages(params.messages)     
        params = convert_payload_for_gemini(params)
        for chunk in response:
            chunk_data = chunk.to_dict() if hasattr(chunk, "to_dict") else chunk
            yield f"data: {json.dumps(chunk_data)}\n\n"
            await asyncio.sleep(0.01)
        yield "data: [DONE]\n\n"
    except Exception as e:
        if "429" in str(e):
            await asyncio.sleep(2)
            async for item in _resp_async_generator(params):
                yield item
        else:
            error_data = {"error": str(e)}
            yield f"data: {json.dumps(error_data)}\n\n"

# ---------------------------------- Metodi API ---------------------------------------
@app.get("/")
def read_general(): 
    return {"response": "Benvenuto"}

@app.get("/health")
async def health_check():
    return {"message": "success"}

@app.post("/v1/chat/completions", dependencies=[Depends(verify_api_key)])
async def chat_completions(req: ChatCompletionRequest):
    try:    
        if not req.messages:
            raise HTTPException(status_code=400, detail="Nessun messaggio fornito")
        if not req.stream:
            return call_api_sync(req)
        else:
            return StreamingResponse(_resp_async_generator(req), media_type="application/x-ndjson")            
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

if __name__ == "__main__":
    import uvicorn
    uvicorn.run("main:app", host="0.0.0.0", port=8000, reload=True)