Spaces:
Sleeping
Sleeping
File size: 10,031 Bytes
0099d95 f0feabf 498d80c 1ad1813 739823d 0bddb91 e2931d4 0bddb91 e2931d4 ae6b74a e2931d4 0bddb91 e2931d4 0bddb91 a367f3a 479cb13 0bddb91 e2931d4 c5c3f69 479cb13 c5c3f69 e2931d4 c5c3f69 e2931d4 0bddb91 2cd7197 ae6b74a e2931d4 0bddb91 e2931d4 0bddb91 ae6b74a ca240c1 ae6b74a ca240c1 ae6b74a ca240c1 ae6b74a ca240c1 ae6b74a 146c720 ae6b74a 0bddb91 ae6b74a e2931d4 0bddb91 e2931d4 11c5c73 0bddb91 ae6b74a 146c720 ae6b74a e2931d4 146c720 0bddb91 11c5c73 0bddb91 11c5c73 e2931d4 0bddb91 e2931d4 0bddb91 e2931d4 ae6b74a 0bddb91 e2931d4 0bddb91 e2931d4 9391fe6 0bddb91 e2931d4 479cb13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
import os
import time
import random
import asyncio
import json
from fastapi import FastAPI, HTTPException, Depends
from fastapi.middleware.cors import CORSMiddleware
from fastapi.security.api_key import APIKeyHeader
from pydantic import BaseModel
from typing import List, Optional
from dotenv import load_dotenv
from starlette.responses import StreamingResponse
from openai import OpenAI
from typing import List, Optional, Dict, Any
import copy
load_dotenv()
BASE_URL = "https://generativelanguage.googleapis.com/v1beta/openai/"
EXPECTED_API_KEY = os.getenv("API_HUGGINGFACE")
API_KEY_NAME = "Authorization"
API_KEYS = [
os.getenv("API_GEMINI_1"),
os.getenv("API_GEMINI_2"),
os.getenv("API_GEMINI_3"),
os.getenv("API_GEMINI_4"),
os.getenv("API_GEMINI_5"),
]
# Classi Pydantic di VALIDAZIONE Body
class ChatCompletionRequest(BaseModel):
model: str = "gemini-2.0-flash"
messages: Optional[Any]
temperature: Optional[float] = 0.8
stream: Optional[bool] = False
stream_options: Optional[Dict[str, Any]] = None
class Config:
extra = "allow"
# Server FAST API
app = FastAPI(title="OpenAI-SDK-compatible API", version="1.0.0", description="Un wrapper FastAPI compatibile con le specifiche dell'API OpenAI.")
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Client OpenAI
def get_openai_client():
''' Client OpenAI passando in modo RANDOM le Chiavi API. In questo modo posso aggirare i limiti "Quota Exceeded" '''
api_key = random.choice(API_KEYS)
return OpenAI(api_key=api_key, base_url=BASE_URL)
# Validazione API
api_key_header = APIKeyHeader(name=API_KEY_NAME, auto_error=False)
def verify_api_key(api_key: str = Depends(api_key_header)):
''' Validazione Chiave API - Per ora in ENV, Token HF '''
if not api_key:
raise HTTPException(status_code=403, detail="API key mancante")
if api_key != f"Bearer {EXPECTED_API_KEY}":
raise HTTPException(status_code=403, detail="API key non valida")
return api_key
# Correzione payload con content=None
def sanitize_messages(messages):
"""Convert None content to empty string to avoid Gemini API errors"""
if not messages:
return messages
for message in messages:
if message.get('content') is None:
message['content'] = " "
return messages
# Funzione per conversione Payload OpenAI to GEMINI (anomalia per ACTION) AnyOf, e property: {}
def convert_openai_schema_for_gemini(tools_schema):
if isinstance(tools_schema, str):
try:
tools_schema = json.loads(tools_schema)
except json.JSONDecodeError:
raise ValueError("Stringa JSON non valida fornita")
converted_schema = []
for tool in tools_schema:
if tool.get("type") != "function":
converted_schema.append(tool)
continue
converted_tool = {"type": "function", "function": {}}
func_def = tool.get("function", {})
if not func_def:
continue
converted_tool["function"]["name"] = func_def.get("name", "")
converted_tool["function"]["description"] = func_def.get("description", "")
if "parameters" in func_def:
params = func_def["parameters"]
converted_params = {"type": "object"}
if "properties" in params:
converted_properties = {}
for prop_name, prop_value in params["properties"].items():
cleaned = clean_schema_property(prop_value)
if cleaned:
converted_properties[prop_name] = cleaned
if converted_properties:
converted_params["properties"] = converted_properties
else:
converted_params["properties"] = {"parameter": {"type": "string"}}
else:
converted_params["properties"] = {"parameter": {"type": "string"}}
if "required" in params:
converted_params["required"] = params["required"]
converted_tool["function"]["parameters"] = converted_params
converted_schema.append(converted_tool)
return converted_schema
def clean_schema_property(prop):
if not isinstance(prop, dict):
return prop
result = {}
for key, value in prop.items():
if key in ("title", "default"):
continue
elif key == "anyOf":
if isinstance(value, list):
for item in value:
if isinstance(item, dict) and item.get("type") != "null":
cleaned_item = clean_schema_property(item)
for k, v in cleaned_item.items():
if k not in result:
result[k] = v
break
elif key == "oneOf":
if isinstance(value, list) and len(value) > 0:
cleaned_item = clean_schema_property(value[0])
for k, v in cleaned_item.items():
if k not in result:
result[k] = v
elif isinstance(value, dict):
cleaned_item = clean_schema_property(value)
for k, v in cleaned_item.items():
if k not in result:
result[k] = v
elif key == "properties" and isinstance(value, dict):
new_props = {}
for prop_name, prop_value in value.items():
cleaned_prop = clean_schema_property(prop_value)
if cleaned_prop:
new_props[prop_name] = cleaned_prop
if not new_props:
new_props = {"parameter": {"type": "string"}}
result[key] = new_props
elif key == "items" and isinstance(value, dict):
result[key] = clean_schema_property(value)
elif isinstance(value, list):
result[key] = [clean_schema_property(item) if isinstance(item, dict) else item for item in value]
else:
result[key] = value
if result.get("type") == "object" and ("properties" not in result or not result["properties"]):
result["properties"] = {"parameter": {"type": "string"}}
return result
def convert_payload_for_gemini(payload: ChatCompletionRequest):
if hasattr(payload, "model_dump"):
payload_converted = json.loads(payload.model_dump_json())
elif isinstance(payload, dict):
payload_converted = payload.copy()
else:
raise ValueError("Formato payload non supportato")
payload_converted.pop("metadata", None)
payload_converted.pop("store", None)
if "tools" in payload_converted:
payload_converted["tools"] = convert_openai_schema_for_gemini(payload_converted["tools"])
new_payload = ChatCompletionRequest.model_validate(payload_converted)
return new_payload
# ---------------------------------- Funzioni per Chat Completion ---------------------------------------
# Chiama API (senza Streaming)
def call_api_sync(params: ChatCompletionRequest):
''' Chiamata API senza streaming. Se da errore 429 lo rifa'''
try:
client = get_openai_client()
if params.messages:
params.messages = sanitize_messages(params.messages)
params = convert_payload_for_gemini(params)
print('------------------------------------- INPUT --------------------------------')
print(params)
response_format = getattr(params, 'response_format', None)
if response_format and getattr(response_format, 'type', None) == 'json_schema':
response = client.beta.chat.completions.parse(**params.model_dump())
else:
response = client.chat.completions.create(**params.model_dump())
print('------------------------------------- OUTPUT -------------------------------')
print(response)
print("")
return response
except Exception as e:
if "429" in str(e):
time.sleep(2)
return call_api_sync(params)
else:
raise e
# Chiama API (con Streaming)
async def _resp_async_generator(params: ChatCompletionRequest):
''' Chiamata API con streaming. Se da errore 429 lo rifa'''
client = get_openai_client()
try:
response = client.chat.completions.create(**params.model_dump())
if params.messages:
params.messages = sanitize_messages(params.messages)
params = convert_payload_for_gemini(params)
for chunk in response:
chunk_data = chunk.to_dict() if hasattr(chunk, "to_dict") else chunk
yield f"data: {json.dumps(chunk_data)}\n\n"
await asyncio.sleep(0.01)
yield "data: [DONE]\n\n"
except Exception as e:
if "429" in str(e):
await asyncio.sleep(2)
async for item in _resp_async_generator(params):
yield item
else:
error_data = {"error": str(e)}
yield f"data: {json.dumps(error_data)}\n\n"
# ---------------------------------- Metodi API ---------------------------------------
@app.get("/")
def read_general():
return {"response": "Benvenuto"}
@app.get("/health")
async def health_check():
return {"message": "success"}
@app.post("/v1/chat/completions", dependencies=[Depends(verify_api_key)])
async def chat_completions(req: ChatCompletionRequest):
try:
if not req.messages:
raise HTTPException(status_code=400, detail="Nessun messaggio fornito")
if not req.stream:
return call_api_sync(req)
else:
return StreamingResponse(_resp_async_generator(req), media_type="application/x-ndjson")
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
if __name__ == "__main__":
import uvicorn
uvicorn.run("main:app", host="0.0.0.0", port=8000, reload=True)
|