Spaces:
Sleeping
Sleeping
from huggingface_hub import InferenceClient | |
import gradio as gr | |
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") | |
def format_prompt(message, history): | |
prompt = "<s>" | |
for user_prompt, bot_response in history: | |
prompt += f"[INST] {user_prompt} [/INST]" | |
prompt += f" {bot_response}</s> " | |
prompt += f"[INST] {message} [/INST]" | |
return prompt | |
def generate( | |
prompt, history, temperature=0.2, max_new_tokens=30000, top_p=0.9, repetition_penalty=1.0, | |
): | |
temperature = max(float(temperature), 0.01) | |
top_p = max(min(float(top_p), 1.0), 0.0) | |
repetition_penalty = max(float(repetition_penalty), 0.01) | |
generate_kwargs = dict( | |
temperature=temperature, | |
max_new_tokens=max_new_tokens, | |
top_p=top_p, | |
repetition_penalty=repetition_penalty, | |
do_sample=True, | |
seed=42, | |
) | |
formatted_prompt = format_prompt(prompt, history) | |
# Generate text | |
response = client.text_generation(formatted_prompt, **generate_kwargs) | |
generated_text = response["generated_text"] | |
return generated_text | |
iface = gr.Interface( | |
fn=generate, | |
inputs=["text", "text", gr.inputs.Slider(0.1, 2.0), gr.inputs.Slider(100, 50000), gr.inputs.Slider(0.1, 1.0)], | |
outputs="text", | |
title="Text Generation" | |
) | |
iface.launch() | |