Spaces:
Sleeping
Sleeping
from huggingface_hub import InferenceClient | |
import gradio as gr | |
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") | |
def my_inference_function(name): | |
return "Hello " + name + "!" | |
gradio_interface = gr.Interface( | |
fn=my_inference_function, | |
inputs="text", | |
outputs="text", | |
examples=[ | |
["Jill"], | |
["Sam"] | |
], | |
title="REST API with Gradio and Huggingface Spaces", | |
description="This is a demo of how to build an AI powered REST API with Gradio and Huggingface Spaces – for free! Based on [this article](https://www.tomsoderlund.com/ai/building-ai-powered-rest-api). See the **Use via API** link at the bottom of this page.", | |
article="© Tom Söderlund 2022" | |
) | |
gradio_interface.launch() | |
def format_prompt(message, history): | |
prompt = "<s>" | |
for user_prompt, bot_response in history: | |
prompt += f"[INST] {user_prompt} [/INST]" | |
prompt += f" {bot_response}</s> " | |
prompt += f"[INST] {message} [/INST]" | |
return prompt | |
def generate( | |
prompt, history, temperature=0.2, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0, | |
): | |
temperature = float(temperature) | |
if temperature < 1e-2: | |
temperature = 1e-2 | |
top_p = float(top_p) | |
generate_kwargs = dict( | |
temperature=temperature, | |
max_new_tokens=max_new_tokens, | |
top_p=top_p, | |
repetition_penalty=repetition_penalty, | |
do_sample=True, | |
seed=42, | |
) | |
formatted_prompt = format_prompt(prompt, history) | |
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) | |
output = "" | |
for response in stream: | |
output += response.token.text | |
yield output | |
return output | |
mychatbot = gr.Chatbot( | |
avatar_images=["./user.png", "./botm.png"], bubble_full_width=False, show_label=False, show_copy_button=True, likeable=True,) | |
demo = gr.ChatInterface(fn=generate, | |
chatbot=mychatbot, | |
title="Matteo's Mixtral 8x7b Chat", | |
retry_btn=None, | |
undo_btn=None | |
) | |
demo.queue().launch(show_api=False) |