Mattral commited on
Commit
3f7cf7d
·
verified ·
1 Parent(s): 0dac492

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -76
app.py CHANGED
@@ -1,78 +1,4 @@
1
  import streamlit as st
2
- from huggingface_hub import InferenceClient
3
- import os
4
- from dotenv import load_dotenv
5
-
6
- # Load environment variables
7
- load_dotenv()
8
- api_key = os.getenv("api_key")
9
-
10
- # App title and description
11
- st.title("I am Your GrowBuddy 🌱")
12
- st.write("Let me help you start gardening. Let's grow together!")
13
-
14
- # Initialize Hugging Face InferenceClient
15
- model_name = "unsloth/gemma-2-2b" # Use the appropriate model
16
- client = InferenceClient(model=model_name, token=api_key)
17
-
18
- # Initialize session state messages
19
- if "messages" not in st.session_state:
20
- st.session_state.messages = [
21
- {"role": "assistant", "content": "Hello there! How can I help you with gardening today?"}
22
- ]
23
-
24
- # Display conversation history
25
- for message in st.session_state.messages:
26
- with st.chat_message(message["role"]):
27
- st.write(message["content"])
28
-
29
- # Create a text area to display logs
30
- log_box = st.empty()
31
-
32
- # Function to generate response using Hugging Face's remote model
33
- def generate_response(prompt):
34
- try:
35
- log_box.text_area("Debugging Logs", "Generating output...", height=200)
36
-
37
- # Generate output from the Hugging Face API
38
- response = client.text_generation(prompt, max_new_tokens=100, temperature=0.7, do_sample=True)
39
-
40
- # Print and log the response to understand the structure
41
- log_box.text_area("Debugging Logs", f"Response: {response}", height=200)
42
-
43
- # Check for proper response structure
44
- if isinstance(response, list) and len(response) > 0 and "generated_text" in response[0]:
45
- output_text = response[0]["generated_text"]
46
- else:
47
- raise ValueError("Unexpected response structure from Hugging Face API.")
48
-
49
- log_box.text_area("Debugging Logs", f"Decoded response: {output_text}", height=200)
50
- return output_text
51
- except Exception as e:
52
- st.error(f"Error during text generation: {str(e)}")
53
- log_box.text_area("Error Details", str(e), height=200)
54
- return "Sorry, I couldn't process your request."
55
-
56
-
57
- # User input field for gardening questions
58
- user_input = st.chat_input("Type your gardening question here:")
59
-
60
- if user_input:
61
- with st.chat_message("user"):
62
- st.write(user_input)
63
-
64
- with st.chat_message("assistant"):
65
- with st.spinner("Generating your answer..."):
66
- response = generate_response(user_input)
67
- st.write(response)
68
-
69
- # Update session state
70
- st.session_state.messages.append({"role": "user", "content": user_input})
71
- st.session_state.messages.append({"role": "assistant", "content": response})
72
-
73
-
74
- '''
75
- import streamlit as st
76
  from transformers import AutoTokenizer, AutoModelForCausalLM
77
  import torch
78
  import os
@@ -94,7 +20,7 @@ def load_model():
94
  return st.session_state.tokenizer, st.session_state.model
95
  else:
96
  tokenizer = AutoTokenizer.from_pretrained("KhunPop/Gardening")
97
- model = AutoModelForCausalLM.from_pretrained("unsloth/gemma-2-2b")
98
  # Store the model and tokenizer in session state
99
  st.session_state.tokenizer = tokenizer
100
  st.session_state.model = model
@@ -171,4 +97,4 @@ if user_input:
171
  st.session_state.messages.append({"role": "user", "content": user_input})
172
  st.session_state.messages.append({"role": "assistant", "content": response})
173
 
174
- '''
 
1
  import streamlit as st
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  from transformers import AutoTokenizer, AutoModelForCausalLM
3
  import torch
4
  import os
 
20
  return st.session_state.tokenizer, st.session_state.model
21
  else:
22
  tokenizer = AutoTokenizer.from_pretrained("KhunPop/Gardening")
23
+ model = AutoModelForCausalLM.from_pretrained("google/gemma-2b-it")
24
  # Store the model and tokenizer in session state
25
  st.session_state.tokenizer = tokenizer
26
  st.session_state.model = model
 
97
  st.session_state.messages.append({"role": "user", "content": user_input})
98
  st.session_state.messages.append({"role": "assistant", "content": response})
99
 
100
+