|
import os |
|
import streamlit as st |
|
import pickle |
|
import time |
|
from langchain import OpenAI |
|
from langchain.chains import RetrievalQAWithSourcesChain |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
from langchain.document_loaders import UnstructuredURLLoader |
|
from langchain.embeddings import OpenAIEmbeddings |
|
from langchain.vectorstores import FAISS |
|
|
|
from dotenv import load_dotenv |
|
load_dotenv() |
|
|
|
st.title("RockyBot: News Research Tool π") |
|
st.sidebar.title("News Article URLs") |
|
|
|
urls = [] |
|
for i in range(3): |
|
url = st.sidebar.text_input(f"URL {i+1}") |
|
urls.append(url) |
|
|
|
process_url_clicked = st.sidebar.button("Process URLs") |
|
file_path = "faiss_store_openai.pkl" |
|
|
|
main_placeholder = st.empty() |
|
llm = OpenAI(temperature=0.9, max_tokens=500) |
|
|
|
if process_url_clicked: |
|
|
|
loader = UnstructuredURLLoader(urls=urls) |
|
main_placeholder.text("Data Loading...Started...β
β
β
") |
|
data = loader.load() |
|
|
|
text_splitter = RecursiveCharacterTextSplitter( |
|
separators=['\n\n', '\n', '.', ','], |
|
chunk_size=1000 |
|
) |
|
main_placeholder.text("Text Splitter...Started...β
β
β
") |
|
docs = text_splitter.split_documents(data) |
|
|
|
embeddings = OpenAIEmbeddings() |
|
vectorstore_openai = FAISS.from_documents(docs, embeddings) |
|
main_placeholder.text("Embedding Vector Started Building...β
β
β
") |
|
time.sleep(2) |
|
|
|
|
|
with open(file_path, "wb") as f: |
|
pickle.dump(vectorstore_openai, f) |
|
|
|
query = main_placeholder.text_input("Question: ") |
|
if query: |
|
if os.path.exists(file_path): |
|
with open(file_path, "rb") as f: |
|
vectorstore = pickle.load(f) |
|
chain = RetrievalQAWithSourcesChain.from_llm(llm=llm, retriever=vectorstore.as_retriever()) |
|
result = chain({"question": query}, return_only_outputs=True) |
|
|
|
st.header("Answer") |
|
st.write(result["answer"]) |
|
|
|
|
|
sources = result.get("sources", "") |
|
if sources: |
|
st.subheader("Sources:") |
|
sources_list = sources.split("\n") |
|
for source in sources_list: |
|
st.write(source) |
|
|
|
|
|
|
|
|
|
|