Files changed (1) hide show
  1. app.py +22 -2
app.py CHANGED
@@ -5,12 +5,30 @@ from qwen_vl_utils import process_vision_info
5
  import torch
6
  from PIL import Image
7
  import subprocess
 
 
8
  # subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
9
 
10
  # models = {
11
  # "Qwen/Qwen2-VL-2B-Instruct": AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True, torch_dtype="auto", _attn_implementation="flash_attention_2").cuda().eval()
12
 
13
  # }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
  models = {
15
  "Qwen/Qwen2-VL-2B-Instruct": Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True, torch_dtype="auto").cuda().eval()
16
 
@@ -31,7 +49,9 @@ prompt_suffix = "<|end|>\n"
31
 
32
  @spaces.GPU
33
  def run_example(image, text_input=None, model_id="Qwen/Qwen2-VL-2B-Instruct"):
34
- print(image)
 
 
35
  model = models[model_id]
36
  processor = processors[model_id]
37
 
@@ -43,7 +63,7 @@ def run_example(image, text_input=None, model_id="Qwen/Qwen2-VL-2B-Instruct"):
43
  "content": [
44
  {
45
  "type": "image",
46
- "image": image[0],
47
  },
48
  {"type": "text", "text": text_input},
49
  ],
 
5
  import torch
6
  from PIL import Image
7
  import subprocess
8
+ from datetime import datetime
9
+
10
  # subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
11
 
12
  # models = {
13
  # "Qwen/Qwen2-VL-2B-Instruct": AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True, torch_dtype="auto", _attn_implementation="flash_attention_2").cuda().eval()
14
 
15
  # }
16
+ def array_to_image_path(image_array):
17
+ # Convert numpy array to PIL Image
18
+ img = Image.fromarray(np.uint8(image_array))
19
+
20
+ # Generate a unique filename using timestamp
21
+ timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
22
+ filename = f"image_{timestamp}.png"
23
+
24
+ # Save the image
25
+ img.save(filename)
26
+
27
+ # Get the full path of the saved image
28
+ full_path = os.path.abspath(filename)
29
+
30
+ return full_path
31
+
32
  models = {
33
  "Qwen/Qwen2-VL-2B-Instruct": Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True, torch_dtype="auto").cuda().eval()
34
 
 
49
 
50
  @spaces.GPU
51
  def run_example(image, text_input=None, model_id="Qwen/Qwen2-VL-2B-Instruct"):
52
+ image_path = array_to_image_path(image)
53
+
54
+ print(image_path)
55
  model = models[model_id]
56
  processor = processors[model_id]
57
 
 
63
  "content": [
64
  {
65
  "type": "image",
66
+ "image": image_path,
67
  },
68
  {"type": "text", "text": text_input},
69
  ],