File size: 21,259 Bytes
9bd2271
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "os.chdir('../')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'c:\\\\mlops project\\\\image-colorization-mlops'"
      ]
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "%pwd"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "from dataclasses import dataclass\n",
    "from pathlib import Path\n",
    "\n",
    "@dataclass(frozen=True)\n",
    "class ModelEvalutaionConfig:\n",
    "    test_data : Path\n",
    "    generator_model : Path\n",
    "    critic_model : Path\n",
    "    all_params: dict"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "from src.imagecolorization.constants import *\n",
    "from src.imagecolorization.utils.common import read_yaml, create_directories, save_json\n",
    "\n",
    "class ConfigurationManager:\n",
    "    def __init__(self, config_filepath=CONFIG_FILE_PATH, params_filepath=PARAMS_FILE_PATH):\n",
    "        self.config = read_yaml(config_filepath)\n",
    "        self.params = read_yaml(params_filepath)\n",
    "        create_directories([self.config.artifacts_root])\n",
    "        \n",
    "        \n",
    "    def get_model_evaluation_config(self) -> ModelEvalutaionConfig:\n",
    "        config = self.config.model_evaluation \n",
    "        params = self.params\n",
    "\n",
    "        model_evaluation_config = ModelEvalutaionConfig(\n",
    "            \n",
    "            test_data=config.test_data,\n",
    "            generator_model=config.generator_model,\n",
    "            critic_model=config.critic_model,\n",
    "            all_params = params\n",
    "            \n",
    "        )\n",
    "\n",
    "        return model_evaluation_config\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "import torch\n",
    "from torch.utils.data import DataLoader\n",
    "import mlflow\n",
    "import dagshub\n",
    "from tqdm.notebook import tqdm\n",
    "import json\n",
    "import os\n",
    "import logging\n",
    "from src.imagecolorization.conponents.model_building import Generator, Critic\n",
    "from src.imagecolorization.conponents.model_trainer import CWGAN\n",
    "import torch\n",
    "from torch import nn, optim\n",
    "from torchvision import transforms\n",
    "from torch.utils.data import Dataset, DataLoader\n",
    "from torch.autograd import Variable\n",
    "from torchvision import models\n",
    "from torch.nn import functional as F\n",
    "import torch.utils.data\n",
    "from torchvision.models.inception import inception_v3\n",
    "from scipy.stats import entropy\n",
    "import pytorch_lightning as pl\n",
    "from torchsummary import summary\n",
    "from src.imagecolorization.conponents.model_building import Generator, Critic\n",
    "from src.imagecolorization.conponents.data_tranformation import ImageColorizationDataset\n",
    "from src.imagecolorization.logging import logger\n",
    "import gc\n",
    "import numpy as np\n",
    "\n",
    "logger = logging.getLogger(__name__)\n",
    "\n",
    "import torch\n",
    "from torch.utils.data import DataLoader\n",
    "import mlflow\n",
    "import dagshub\n",
    "from tqdm.notebook import tqdm\n",
    "import json\n",
    "import os\n",
    "import logging\n",
    "from torchvision.models.inception import inception_v3\n",
    "from torch.nn import functional as F\n",
    "import numpy as np\n",
    "from torchvision import transforms\n",
    "\n",
    "logger = logging.getLogger(__name__)\n",
    "\n",
    "class FID:\n",
    "    def __init__(self, device):\n",
    "        self.device = device\n",
    "        self.inception = inception_v3(pretrained=True, transform_input=False).to(self.device)\n",
    "        self.inception.eval()\n",
    "        self.resize = transforms.Resize((299, 299))\n",
    "\n",
    "    def convert_to_three_channels(self, images):\n",
    "        if images.shape[1] == 2:\n",
    "            images = torch.cat((images, images[:, :1, :, :]), dim=1)  # Duplicate one channel\n",
    "        return images\n",
    "\n",
    "    def preprocess_images(self, images):\n",
    "        images = self.convert_to_three_channels(images)\n",
    "        images = images.to(self.device)\n",
    "        images = self.resize(images)\n",
    "        return images\n",
    "\n",
    "    def calculate_fid(self, real_images, generated_images):\n",
    "        batch_size = 32\n",
    "        real_features_list = []\n",
    "        generated_features_list = []\n",
    "\n",
    "        for i in range(0, len(real_images), batch_size):\n",
    "            real_batch = self.preprocess_images(real_images[i:i+batch_size])\n",
    "            generated_batch = self.preprocess_images(generated_images[i:i+batch_size])\n",
    "\n",
    "            with torch.no_grad():\n",
    "                real_features = self.inception(real_batch).view(real_batch.size(0), -1)\n",
    "                generated_features = self.inception(generated_batch).view(generated_batch.size(0), -1)\n",
    "\n",
    "            real_features_list.append(real_features.cpu())\n",
    "            generated_features_list.append(generated_features.cpu())\n",
    "\n",
    "        real_features = torch.cat(real_features_list, dim=0)\n",
    "        generated_features = torch.cat(generated_features_list, dim=0)\n",
    "\n",
    "        mu_diff = real_features.mean(dim=0) - generated_features.mean(dim=0)\n",
    "        sigma_diff = real_features.std(dim=0) - generated_features.std(dim=0)\n",
    "\n",
    "        fid = mu_diff.pow(2).sum() + sigma_diff.pow(2).sum()\n",
    "        return fid.item()\n",
    "\n",
    "class InceptionScore:\n",
    "    def __init__(self, device):\n",
    "        self.device = device\n",
    "        self.inception = inception_v3(pretrained=True, transform_input=False).to(self.device)\n",
    "        self.inception.eval()\n",
    "        self.resize = transforms.Resize((299, 299))\n",
    "\n",
    "    def convert_to_three_channels(self, images):\n",
    "        if images.shape[1] == 2:  # If the input has 2 channels\n",
    "            images = torch.cat((images, images[:, :1, :, :]), dim=1)  # Duplicate one channel\n",
    "        return images\n",
    "\n",
    "    def preprocess_images(self, images):\n",
    "        images = self.convert_to_three_channels(images)\n",
    "        images = images.to(self.device)\n",
    "        images = self.resize(images)\n",
    "        return images\n",
    "\n",
    "    def calculate_is(self, images):\n",
    "        batch_size = 1\n",
    "        splits = 10\n",
    "        preds = []\n",
    "\n",
    "        for i in range(0, len(images), batch_size):\n",
    "            batch = self.preprocess_images(images[i:i+batch_size])\n",
    "            with torch.no_grad():\n",
    "                pred = F.softmax(self.inception(batch), dim=1)\n",
    "            preds.append(pred.cpu().numpy())\n",
    "\n",
    "        preds = np.concatenate(preds, axis=0)\n",
    "        n_images = preds.shape[0]\n",
    "\n",
    "        split_scores = []\n",
    "        for k in range(splits):\n",
    "            part = preds[k * (n_images // splits): (k + 1) * (n_images // splits), :]\n",
    "            py = np.mean(part, axis=0)\n",
    "            scores = []\n",
    "            for i in range(part.shape[0]):\n",
    "                pyx = part[i, :]\n",
    "                scores.append(entropy(pyx, py))\n",
    "            split_scores.append(np.exp(np.mean(scores)))\n",
    "\n",
    "        return np.mean(split_scores), np.std(split_scores)\n",
    "\n",
    "class ModelEvaluation:\n",
    "    def __init__(self, config):\n",
    "        self.config = config\n",
    "        self.device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
    "        self.generator = None\n",
    "        self.critic = None\n",
    "\n",
    "    def load_model(self):\n",
    "        self.generator = Generator(input_channel=1, output_channel=2).to(self.device)\n",
    "        self.critic = Critic(in_channels=3).to(self.device)\n",
    "\n",
    "        self.generator.load_state_dict(torch.load(self.config.generator_model))\n",
    "        self.critic.load_state_dict(torch.load(self.config.critic_model))\n",
    "\n",
    "        self.generator.eval()\n",
    "        self.critic.eval()\n",
    "\n",
    "        logger.info(\"Model loaded successfully.\")\n",
    "\n",
    "    def load_data(self):\n",
    "        self.test_dataset = torch.load(self.config.test_data)\n",
    "        self.test_dataloader = DataLoader(\n",
    "            self.test_dataset, \n",
    "            batch_size=self.config.all_params.BATCH_SIZE, \n",
    "            shuffle=True,\n",
    "        )\n",
    "\n",
    "    def evaluate_model(self):\n",
    "        is_calculator = InceptionScore(self.device)\n",
    "        fid_calculator = FID(self.device)\n",
    "\n",
    "        all_preds = []\n",
    "        all_real = []\n",
    "\n",
    "        with torch.no_grad():\n",
    "            for batch in tqdm(self.test_dataloader, desc=\"Evaluating\", unit=\"batch\"):\n",
    "                real, condition = batch\n",
    "                real, condition = real.to(self.device), condition.to(self.device)\n",
    "                fake = self.generator(condition)\n",
    "                all_preds.append(fake.cpu())\n",
    "                all_real.append(real.cpu())\n",
    "\n",
    "        all_preds = torch.cat(all_preds, dim=0)\n",
    "        all_real = torch.cat(all_real, dim=0)\n",
    "\n",
    "        print(\"Calculating Inception Score for real images...\")\n",
    "        mean_real_is, std_real_is = is_calculator.calculate_is(all_real)\n",
    "        print(\"Calculating Inception Score for generated images...\")\n",
    "        mean_fake_is, std_fake_is = is_calculator.calculate_is(all_preds)\n",
    "\n",
    "        print(\"Calculating Fréchet Inception Distance...\")\n",
    "        fid_value = fid_calculator.calculate_fid(all_real, all_preds)\n",
    "\n",
    "        results = {\n",
    "            \"inception_score_real\": {\"mean\": float(mean_real_is), \"std\": float(std_real_is)},\n",
    "            \"inception_score_fake\": {\"mean\": float(mean_fake_is), \"std\": float(std_fake_is)},\n",
    "            \"fid\": float(fid_value)\n",
    "        }\n",
    "        return results\n",
    "\n",
    "    def save_scores(self, results):\n",
    "        save_json(path=Path('scores.json'), data=results)\n",
    "\n",
    "    def log_to_mlflow(self, results):\n",
    "        dagshub.init(repo_owner='HAKIM-ML', repo_name='image-colorization-mlops', mlflow=True)\n",
    "\n",
    "        with mlflow.start_run():\n",
    "            # Log all parameters\n",
    "            for key, value in self.config.all_params.items():\n",
    "                mlflow.log_param(key, value)\n",
    "\n",
    "            # Log metrics\n",
    "            mlflow.log_metric('inception_score_real_mean', results['inception_score_real']['mean'])\n",
    "            mlflow.log_metric('inception_score_fake_mean', results['inception_score_fake']['mean'])\n",
    "            mlflow.log_metric('fid', results['fid'])\n",
    "\n",
    "            # Log the JSON file as an artifact\n",
    "            mlflow.log_artifact('scores.json')\n",
    "\n",
    "    def run(self):\n",
    "        self.load_model()\n",
    "        self.load_data()\n",
    "        results = self.evaluate_model()\n",
    "        self.save_scores(results)\n",
    "        self.log_to_mlflow(results)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[2024-08-27 19:55:58,492: INFO: common: yaml file: config\\config.yaml loaded successfully]\n",
      "[2024-08-27 19:55:58,497: INFO: common: yaml file: params.yaml loaded successfully]\n",
      "[2024-08-27 19:55:58,498: INFO: common: created directory at: artifacts]\n",
      "[2024-08-27 19:55:59,527: INFO: 1629019639: Model loaded successfully.]\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "C:\\Users\\azizu\\AppData\\Local\\Temp\\ipykernel_54388\\1629019639.py:144: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.\n",
      "  self.generator.load_state_dict(torch.load(self.config.generator_model))\n",
      "C:\\Users\\azizu\\AppData\\Local\\Temp\\ipykernel_54388\\1629019639.py:145: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.\n",
      "  self.critic.load_state_dict(torch.load(self.config.critic_model))\n",
      "C:\\Users\\azizu\\AppData\\Local\\Temp\\ipykernel_54388\\1629019639.py:153: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.\n",
      "  self.test_dataset = torch.load(self.config.test_data)\n",
      "c:\\Users\\azizu\\AppData\\Local\\Programs\\Python\\Python311\\Lib\\site-packages\\torchvision\\models\\_utils.py:208: UserWarning: The parameter 'pretrained' is deprecated since 0.13 and may be removed in the future, please use 'weights' instead.\n",
      "  warnings.warn(\n",
      "c:\\Users\\azizu\\AppData\\Local\\Programs\\Python\\Python311\\Lib\\site-packages\\torchvision\\models\\_utils.py:223: UserWarning: Arguments other than a weight enum or `None` for 'weights' are deprecated since 0.13 and may be removed in the future. The current behavior is equivalent to passing `weights=Inception_V3_Weights.IMAGENET1K_V1`. You can also use `weights=Inception_V3_Weights.DEFAULT` to get the most up-to-date weights.\n",
      "  warnings.warn(msg)\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "e0c3c8dcf08846e2ad26bd6966770dfa",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Evaluating:   0%|          | 0/5000 [00:00<?, ?batch/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Calculating Inception Score for real images...\n",
      "Calculating Inception Score for generated images...\n",
      "Calculating Fréchet Inception Distance...\n",
      "[2024-08-27 20:03:48,138: INFO: common: Json file saved at: scores.json]\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">Accessing as HAKIM-ML\n",
       "</pre>\n"
      ],
      "text/plain": [
       "Accessing as HAKIM-ML\n"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[2024-08-27 20:03:55,975: INFO: helpers: Accessing as HAKIM-ML]\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">Initialized MLflow to track repo <span style=\"color: #008000; text-decoration-color: #008000\">\"HAKIM-ML/image-colorization-mlops\"</span>\n",
       "</pre>\n"
      ],
      "text/plain": [
       "Initialized MLflow to track repo \u001b[32m\"HAKIM-ML/image-colorization-mlops\"\u001b[0m\n"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[2024-08-27 20:04:04,162: INFO: helpers: Initialized MLflow to track repo \"HAKIM-ML/image-colorization-mlops\"]\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">Repository HAKIM-ML/image-colorization-mlops initialized!\n",
       "</pre>\n"
      ],
      "text/plain": [
       "Repository HAKIM-ML/image-colorization-mlops initialized!\n"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[2024-08-27 20:04:04,166: INFO: helpers: Repository HAKIM-ML/image-colorization-mlops initialized!]\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "2024/08/27 20:04:24 INFO mlflow.tracking._tracking_service.client: 🏃 View run grandiose-rat-650 at: https://dagshub.com/HAKIM-ML/image-colorization-mlops.mlflow/#/experiments/0/runs/593e3211953d43359f8810e4d3b21738.\n",
      "2024/08/27 20:04:24 INFO mlflow.tracking._tracking_service.client: 🧪 View experiment at: https://dagshub.com/HAKIM-ML/image-colorization-mlops.mlflow/#/experiments/0.\n"
     ]
    }
   ],
   "source": [
    "\n",
    "try:\n",
    "    config_manager = ConfigurationManager()\n",
    "    model_evaluation_config = config_manager.get_model_evaluation_config()\n",
    "    model_evaluation = ModelEvaluation(config=model_evaluation_config)\n",
    "    model_evaluation.run()\n",
    "except Exception as e:\n",
    "    logger.exception(\"An error occurred during model evaluation\")\n",
    "    raise e"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.0"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}