Spaces:
Sleeping
Sleeping
hakim
commited on
Commit
Β·
2bd8718
1
Parent(s):
fd31bf7
app updated
Browse files- app.py +28 -1
- research/model_evaluatoin.ipynb +19 -15
app.py
CHANGED
@@ -1,5 +1,32 @@
|
|
1 |
import streamlit as st
|
2 |
-
from textsummarizer.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
def main():
|
5 |
# Set page config
|
|
|
1 |
import streamlit as st
|
2 |
+
from textsummarizer.config.configuration import ConfigurationManager
|
3 |
+
from transformers import AutoTokenizer
|
4 |
+
from transformers import pipeline
|
5 |
+
|
6 |
+
|
7 |
+
|
8 |
+
class PredictionPipeline:
|
9 |
+
def __init__(self):
|
10 |
+
self.config = ConfigurationManager().get_model_evaluation_config()
|
11 |
+
|
12 |
+
def predict(self,text):
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained(self.config.tokenizer_path)
|
14 |
+
gen_kwargs = {"length_penalty": 0.8, "num_beams":8, "max_length": 128}
|
15 |
+
|
16 |
+
pipe = pipeline("summarization", model=self.config.model_path,tokenizer=tokenizer)
|
17 |
+
|
18 |
+
print("Dialogue:")
|
19 |
+
print(text)
|
20 |
+
|
21 |
+
output = pipe(text, **gen_kwargs)[0]["summary_text"]
|
22 |
+
print("\nModel Summary:")
|
23 |
+
print(output)
|
24 |
+
|
25 |
+
return output
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
|
30 |
|
31 |
def main():
|
32 |
# Set page config
|
research/model_evaluatoin.ipynb
CHANGED
@@ -12,7 +12,7 @@
|
|
12 |
},
|
13 |
{
|
14 |
"cell_type": "code",
|
15 |
-
"execution_count":
|
16 |
"metadata": {},
|
17 |
"outputs": [],
|
18 |
"source": [
|
@@ -30,7 +30,7 @@
|
|
30 |
},
|
31 |
{
|
32 |
"cell_type": "code",
|
33 |
-
"execution_count":
|
34 |
"metadata": {},
|
35 |
"outputs": [],
|
36 |
"source": [
|
@@ -52,6 +52,7 @@
|
|
52 |
" \n",
|
53 |
" def get_model_evaluation_config(self) -> ModelEvaluationConfig:\n",
|
54 |
" config = self.config.model_evaluation\n",
|
|
|
55 |
"\n",
|
56 |
" create_directories([config.root_dir])\n",
|
57 |
"\n",
|
@@ -60,7 +61,8 @@
|
|
60 |
" data_path=config.data_path,\n",
|
61 |
" model_path = config.model_path,\n",
|
62 |
" tokenizer_path = config.tokenizer_path,\n",
|
63 |
-
" metric_file_name = config.metric_file_name
|
|
|
64 |
" \n",
|
65 |
" )\n",
|
66 |
"\n",
|
@@ -91,7 +93,7 @@
|
|
91 |
},
|
92 |
{
|
93 |
"cell_type": "code",
|
94 |
-
"execution_count":
|
95 |
"metadata": {},
|
96 |
"outputs": [],
|
97 |
"source": [
|
@@ -155,6 +157,7 @@
|
|
155 |
" with mlflow.start_run():\n",
|
156 |
" mlflow.log_param(\"model_name\", \"pegasus\")\n",
|
157 |
" mlflow.log_param(\"dataset\", \"samsum\")\n",
|
|
|
158 |
"\n",
|
159 |
" score = self.calculate_metric_on_test_ds(\n",
|
160 |
" dataset_samsum_pt['test'][0:10], rouge_metric, model_pegasus, tokenizer, \n",
|
@@ -162,6 +165,7 @@
|
|
162 |
" )\n",
|
163 |
"\n",
|
164 |
" rouge_dict = dict((rn, score[rn].mid.fmeasure) for rn in rouge_names)\n",
|
|
|
165 |
"\n",
|
166 |
" # Log metrics to MLflow\n",
|
167 |
" for rouge_name, rouge_score in rouge_dict.items():\n",
|
@@ -177,18 +181,18 @@
|
|
177 |
},
|
178 |
{
|
179 |
"cell_type": "code",
|
180 |
-
"execution_count":
|
181 |
"metadata": {},
|
182 |
"outputs": [
|
183 |
{
|
184 |
"name": "stdout",
|
185 |
"output_type": "stream",
|
186 |
"text": [
|
187 |
-
"[2024-08-11 22:
|
188 |
-
"[2024-08-11 22:
|
189 |
-
"[2024-08-11 22:
|
190 |
-
"[2024-08-11 22:
|
191 |
-
"[2024-08-11 22:
|
192 |
]
|
193 |
},
|
194 |
{
|
@@ -208,7 +212,7 @@
|
|
208 |
"name": "stdout",
|
209 |
"output_type": "stream",
|
210 |
"text": [
|
211 |
-
"[2024-08-11 22:
|
212 |
]
|
213 |
},
|
214 |
{
|
@@ -228,8 +232,8 @@
|
|
228 |
"name": "stdout",
|
229 |
"output_type": "stream",
|
230 |
"text": [
|
231 |
-
"[2024-08-11 22:
|
232 |
-
"[2024-08-11 22:
|
233 |
]
|
234 |
},
|
235 |
{
|
@@ -240,14 +244,14 @@
|
|
240 |
"You can avoid this message in future by passing the argument `trust_remote_code=True`.\n",
|
241 |
"Passing `trust_remote_code=True` will be mandatory to load this metric from the next major release of `datasets`.\n",
|
242 |
" warnings.warn(\n",
|
243 |
-
"100
|
244 |
]
|
245 |
},
|
246 |
{
|
247 |
"name": "stdout",
|
248 |
"output_type": "stream",
|
249 |
"text": [
|
250 |
-
"[2024-08-11 22:
|
251 |
]
|
252 |
},
|
253 |
{
|
|
|
12 |
},
|
13 |
{
|
14 |
"cell_type": "code",
|
15 |
+
"execution_count": 9,
|
16 |
"metadata": {},
|
17 |
"outputs": [],
|
18 |
"source": [
|
|
|
30 |
},
|
31 |
{
|
32 |
"cell_type": "code",
|
33 |
+
"execution_count": 10,
|
34 |
"metadata": {},
|
35 |
"outputs": [],
|
36 |
"source": [
|
|
|
52 |
" \n",
|
53 |
" def get_model_evaluation_config(self) -> ModelEvaluationConfig:\n",
|
54 |
" config = self.config.model_evaluation\n",
|
55 |
+
" params = self.params.TrainingArguments\n",
|
56 |
"\n",
|
57 |
" create_directories([config.root_dir])\n",
|
58 |
"\n",
|
|
|
61 |
" data_path=config.data_path,\n",
|
62 |
" model_path = config.model_path,\n",
|
63 |
" tokenizer_path = config.tokenizer_path,\n",
|
64 |
+
" metric_file_name = config.metric_file_name,\n",
|
65 |
+
" all_params = params\n",
|
66 |
" \n",
|
67 |
" )\n",
|
68 |
"\n",
|
|
|
93 |
},
|
94 |
{
|
95 |
"cell_type": "code",
|
96 |
+
"execution_count": 11,
|
97 |
"metadata": {},
|
98 |
"outputs": [],
|
99 |
"source": [
|
|
|
157 |
" with mlflow.start_run():\n",
|
158 |
" mlflow.log_param(\"model_name\", \"pegasus\")\n",
|
159 |
" mlflow.log_param(\"dataset\", \"samsum\")\n",
|
160 |
+
" mlflow.log_param('parameter name', 'value')\n",
|
161 |
"\n",
|
162 |
" score = self.calculate_metric_on_test_ds(\n",
|
163 |
" dataset_samsum_pt['test'][0:10], rouge_metric, model_pegasus, tokenizer, \n",
|
|
|
165 |
" )\n",
|
166 |
"\n",
|
167 |
" rouge_dict = dict((rn, score[rn].mid.fmeasure) for rn in rouge_names)\n",
|
168 |
+
" mlflow.log_params(self.config.all_params)\n",
|
169 |
"\n",
|
170 |
" # Log metrics to MLflow\n",
|
171 |
" for rouge_name, rouge_score in rouge_dict.items():\n",
|
|
|
181 |
},
|
182 |
{
|
183 |
"cell_type": "code",
|
184 |
+
"execution_count": 12,
|
185 |
"metadata": {},
|
186 |
"outputs": [
|
187 |
{
|
188 |
"name": "stdout",
|
189 |
"output_type": "stream",
|
190 |
"text": [
|
191 |
+
"[2024-08-11 22:39:28,983: INFO: common: yaml file: config\\config.yaml loaded successfully]\n",
|
192 |
+
"[2024-08-11 22:39:28,986: INFO: common: yaml file: params.yaml loaded successfully]\n",
|
193 |
+
"[2024-08-11 22:39:28,989: INFO: common: created directory at: artifacts]\n",
|
194 |
+
"[2024-08-11 22:39:28,992: INFO: common: created directory at: artifacts/model_evaluation]\n",
|
195 |
+
"[2024-08-11 22:39:29,723: INFO: _client: HTTP Request: GET https://dagshub.com/api/v1/repos/azizulhakim8291/text-summarization \"HTTP/1.1 200 OK\"]\n"
|
196 |
]
|
197 |
},
|
198 |
{
|
|
|
212 |
"name": "stdout",
|
213 |
"output_type": "stream",
|
214 |
"text": [
|
215 |
+
"[2024-08-11 22:39:29,731: INFO: helpers: Initialized MLflow to track repo \"azizulhakim8291/text-summarization\"]\n"
|
216 |
]
|
217 |
},
|
218 |
{
|
|
|
232 |
"name": "stdout",
|
233 |
"output_type": "stream",
|
234 |
"text": [
|
235 |
+
"[2024-08-11 22:39:29,735: INFO: helpers: Repository azizulhakim8291/text-summarization initialized!]\n",
|
236 |
+
"[2024-08-11 22:39:29,802: WARNING: connectionpool: Retrying (Retry(total=4, connect=5, read=4, redirect=5, status=5)) after connection broken by 'RemoteDisconnected('Remote end closed connection without response')': /azizulhakim8291/text-summarization.mlflow/api/2.0/mlflow/experiments/get-by-name?experiment_name=text-summarization-evaluation]\n"
|
237 |
]
|
238 |
},
|
239 |
{
|
|
|
244 |
"You can avoid this message in future by passing the argument `trust_remote_code=True`.\n",
|
245 |
"Passing `trust_remote_code=True` will be mandatory to load this metric from the next major release of `datasets`.\n",
|
246 |
" warnings.warn(\n",
|
247 |
+
"100%|ββββββββοΏ½οΏ½οΏ½β| 5/5 [00:17<00:00, 3.48s/it]"
|
248 |
]
|
249 |
},
|
250 |
{
|
251 |
"name": "stdout",
|
252 |
"output_type": "stream",
|
253 |
"text": [
|
254 |
+
"[2024-08-11 22:39:59,553: INFO: rouge_scorer: Using default tokenizer.]\n"
|
255 |
]
|
256 |
},
|
257 |
{
|