Spaces:
Sleeping
Sleeping
import os | |
import gc | |
os.environ["CUDA_VISIBLE_DEVICES"]="0,1" | |
import torch | |
from tqdm import tqdm | |
from typing import Optional, Union | |
import pandas as pd, numpy as np, torch | |
from datasets import Dataset, load_dataset | |
from dataclasses import dataclass | |
from transformers import AutoTokenizer, AutoConfig, AutoModelForSequenceClassification, AutoModel | |
from transformers import EarlyStoppingCallback | |
from transformers.tokenization_utils_base import PreTrainedTokenizerBase, PaddingStrategy | |
from transformers import AutoModelForMultipleChoice, TrainingArguments, Trainer | |
import numpy as np | |
from sklearn.metrics import recall_score, accuracy_score | |
from transformers import DataCollatorWithPadding | |
import logging | |
# import mylib | |
logger = logging.getLogger(__name__) | |
VER = 1 | |
MAX_LEN = 256 | |
TOKENIZER_BINARY = "crarojasca/BinaryAugmentedCARDS" | |
BINARY_MODEL = "Medissa/Roberta_Binary" | |
TOKENIZER_MULTI_CLASS = "crarojasca/TaxonomyAugmentedCARDS" | |
MULTI_CLASS_MODEL = "Medissa/Deberta_Taxonomy" | |
ID2LABEL = { | |
0: '1_not_happening', | |
1: '2_not_human', | |
2: '3_not_bad', | |
3: '4_solutions_harmful_unnecessary', | |
4: '7_fossil_fuels_needed', | |
5: '5_science_unreliable', | |
6: '6_proponents_biased'} | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
from fastapi import APIRouter | |
from datetime import datetime | |
from datasets import load_dataset | |
from sklearn.metrics import accuracy_score | |
import random | |
from .utils.evaluation import TextEvaluationRequest | |
from .utils.emissions import tracker, clean_emissions_data, get_space_info | |
router = APIRouter() | |
DESCRIPTION = "Random Baseline" | |
ROUTE = "/text" | |
async def evaluate_text(request: TextEvaluationRequest): | |
""" | |
Evaluate text classification for climate disinformation detection. | |
Current Model: Random Baseline | |
- Makes random predictions from the label space (0-7) | |
- Used as a baseline for comparison | |
""" | |
# Get space info | |
username, space_url = get_space_info() | |
# Define the label mapping | |
LABEL_MAPPING = { | |
"0_not_relevant": 0, | |
"1_not_happening": 1, | |
"2_not_human": 2, | |
"3_not_bad": 3, | |
"4_solutions_harmful_unnecessary": 4, | |
"5_science_unreliable": 5, | |
"6_proponents_biased": 6, | |
"7_fossil_fuels_needed": 7 | |
} | |
# Load and prepare the dataset | |
dataset = load_dataset(request.dataset_name) | |
# Convert string labels to integers | |
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]}) | |
# Split dataset | |
train_test = dataset["train"] | |
test_dataset = dataset["test"] | |
# Start tracking emissions | |
tracker.start() | |
tracker.start_task("inference") | |
#-------------------------------------------------------------------------------------------- | |
# YOUR MODEL INFERENCE CODE HERE | |
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked. | |
#-------------------------------------------------------------------------------------------- | |
print('Start Binary') | |
# Binary Model | |
tokenizer = AutoTokenizer.from_pretrained(BINARY_MODEL) | |
print('Loaded Tokenizer') | |
model = AutoModelForSequenceClassification.from_pretrained(BINARY_MODEL) | |
print(device) | |
model.to(device) | |
model.eval() | |
print('Loaded Model') | |
predictions = [] | |
for i,text in tqdm(enumerate(test_dataset["quote"])): | |
print(i) | |
with torch.no_grad(): | |
tokenized_text = tokenizer(text, truncation=True, padding='max_length', return_tensors = "pt") | |
inputt = {k:v.to(device) for k,v in tokenized_text.items()} | |
# Running Binary Model | |
outputs = model(**inputt) | |
binary_prediction = torch.argmax(outputs.logits, axis=1) | |
binary_predictions = binary_prediction.to('cpu').item() | |
prediction = "0_not_relevant" if binary_prediction==0 else 1 | |
predictions.append(prediction) | |
gc.collect() | |
## 2. Taxonomy Model | |
print('Start Multi') | |
tokenizer = AutoTokenizer.from_pretrained(MULTI_CLASS_MODEL) | |
print('Loaded Tokenizer') | |
model = AutoModelForSequenceClassification.from_pretrained(MULTI_CLASS_MODEL) | |
model.to(device) | |
model.eval() | |
print('Loaded Model') | |
for i,text in tqdm(enumerate(test_dataset["quote"])): | |
if isinstance(predictions[i], str): | |
continue | |
with torch.no_grad(): | |
tokenized_text = tokenizer(text, truncation=True, padding='max_length', return_tensors = "pt") | |
inputt = {k:v.to(device) for k,v in tokenized_text.items()} | |
outputs = model(**inputt) | |
taxonomy_prediction = torch.argmax(outputs.logits, axis=1) | |
taxonomy_prediction = taxonomy_prediction.to('cpu').item() | |
prediction = ID2LABEL[taxonomy_prediction] | |
predictions[i] = prediction | |
if i%10: | |
print(f'iteration: {i}') | |
predictions = [LABEL_MAPPING[pred] for pred in predictions] | |
#-------------------------------------------------------------------------------------------- | |
# YOUR MODEL INFERENCE STOPS HERE | |
#-------------------------------------------------------------------------------------------- | |
# Stop tracking emissions | |
emissions_data = tracker.stop_task() | |
# Calculate accuracy | |
accuracy = accuracy_score(true_labels, predictions) | |
# Prepare results dictionary | |
results = { | |
"username": username, | |
"space_url": space_url, | |
"submission_timestamp": datetime.now().isoformat(), | |
"model_description": DESCRIPTION, | |
"accuracy": float(accuracy), | |
"energy_consumed_wh": emissions_data.energy_consumed * 1000, | |
"emissions_gco2eq": emissions_data.emissions * 1000, | |
"emissions_data": clean_emissions_data(emissions_data), | |
"api_route": ROUTE, | |
"dataset_config": { | |
"dataset_name": request.dataset_name, | |
"test_size": request.test_size, | |
"test_seed": request.test_seed | |
} | |
} | |
return results |