Medissa's picture
Update tasks/text.py
4d4a47e verified
import os
import gc
os.environ["CUDA_VISIBLE_DEVICES"]="0,1"
import torch
from tqdm import tqdm
from typing import Optional, Union
import pandas as pd, numpy as np, torch
from datasets import Dataset, load_dataset
from dataclasses import dataclass
from transformers import AutoTokenizer, AutoConfig, AutoModelForSequenceClassification, AutoModel
from transformers import EarlyStoppingCallback
from transformers.tokenization_utils_base import PreTrainedTokenizerBase, PaddingStrategy
from transformers import AutoModelForMultipleChoice, TrainingArguments, Trainer
import numpy as np
from sklearn.metrics import recall_score, accuracy_score
from transformers import DataCollatorWithPadding
import logging
# import mylib
logger = logging.getLogger(__name__)
VER = 1
MAX_LEN = 256
TOKENIZER_BINARY = "crarojasca/BinaryAugmentedCARDS"
BINARY_MODEL = "Medissa/Roberta_Binary"
TOKENIZER_MULTI_CLASS = "crarojasca/TaxonomyAugmentedCARDS"
MULTI_CLASS_MODEL = "Medissa/Deberta_Taxonomy"
ID2LABEL = {
0: '1_not_happening',
1: '2_not_human',
2: '3_not_bad',
3: '4_solutions_harmful_unnecessary',
4: '7_fossil_fuels_needed',
5: '5_science_unreliable',
6: '6_proponents_biased'}
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import random
from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info
router = APIRouter()
DESCRIPTION = "Random Baseline"
ROUTE = "/text"
@router.post(ROUTE, tags=["Text Task"],
description=DESCRIPTION)
async def evaluate_text(request: TextEvaluationRequest):
"""
Evaluate text classification for climate disinformation detection.
Current Model: Random Baseline
- Makes random predictions from the label space (0-7)
- Used as a baseline for comparison
"""
# Get space info
username, space_url = get_space_info()
# Define the label mapping
LABEL_MAPPING = {
"0_not_relevant": 0,
"1_not_happening": 1,
"2_not_human": 2,
"3_not_bad": 3,
"4_solutions_harmful_unnecessary": 4,
"5_science_unreliable": 5,
"6_proponents_biased": 6,
"7_fossil_fuels_needed": 7
}
# Load and prepare the dataset
dataset = load_dataset(request.dataset_name)
# Convert string labels to integers
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
# Split dataset
train_test = dataset["train"]
test_dataset = dataset["test"]
# Start tracking emissions
tracker.start()
tracker.start_task("inference")
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE CODE HERE
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
#--------------------------------------------------------------------------------------------
print('Start Binary')
# Binary Model
tokenizer = AutoTokenizer.from_pretrained(BINARY_MODEL)
print('Loaded Tokenizer')
model = AutoModelForSequenceClassification.from_pretrained(BINARY_MODEL)
print(device)
model.to(device)
model.eval()
print('Loaded Model')
predictions = []
for i,text in tqdm(enumerate(test_dataset["quote"])):
print(i)
with torch.no_grad():
tokenized_text = tokenizer(text, truncation=True, padding='max_length', return_tensors = "pt")
inputt = {k:v.to(device) for k,v in tokenized_text.items()}
# Running Binary Model
outputs = model(**inputt)
binary_prediction = torch.argmax(outputs.logits, axis=1)
binary_predictions = binary_prediction.to('cpu').item()
prediction = "0_not_relevant" if binary_prediction==0 else 1
predictions.append(prediction)
gc.collect()
## 2. Taxonomy Model
print('Start Multi')
tokenizer = AutoTokenizer.from_pretrained(MULTI_CLASS_MODEL)
print('Loaded Tokenizer')
model = AutoModelForSequenceClassification.from_pretrained(MULTI_CLASS_MODEL)
model.to(device)
model.eval()
print('Loaded Model')
for i,text in tqdm(enumerate(test_dataset["quote"])):
if isinstance(predictions[i], str):
continue
with torch.no_grad():
tokenized_text = tokenizer(text, truncation=True, padding='max_length', return_tensors = "pt")
inputt = {k:v.to(device) for k,v in tokenized_text.items()}
outputs = model(**inputt)
taxonomy_prediction = torch.argmax(outputs.logits, axis=1)
taxonomy_prediction = taxonomy_prediction.to('cpu').item()
prediction = ID2LABEL[taxonomy_prediction]
predictions[i] = prediction
if i%10:
print(f'iteration: {i}')
predictions = [LABEL_MAPPING[pred] for pred in predictions]
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE STOPS HERE
#--------------------------------------------------------------------------------------------
# Stop tracking emissions
emissions_data = tracker.stop_task()
# Calculate accuracy
accuracy = accuracy_score(true_labels, predictions)
# Prepare results dictionary
results = {
"username": username,
"space_url": space_url,
"submission_timestamp": datetime.now().isoformat(),
"model_description": DESCRIPTION,
"accuracy": float(accuracy),
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
"emissions_gco2eq": emissions_data.emissions * 1000,
"emissions_data": clean_emissions_data(emissions_data),
"api_route": ROUTE,
"dataset_config": {
"dataset_name": request.dataset_name,
"test_size": request.test_size,
"test_seed": request.test_seed
}
}
return results