Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,8 +4,14 @@ import traceback
|
|
4 |
import gradio as gr
|
5 |
import cv2 as cv
|
6 |
import numpy as np
|
|
|
7 |
import mediapipe as mp
|
8 |
-
from
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
def custom_excepthook(type, value, tb):
|
11 |
traceback.print_exception(type, value, tb)
|
@@ -16,18 +22,16 @@ sys.excepthook = custom_excepthook
|
|
16 |
def list_overlay_images(directory):
|
17 |
return [f for f in os.listdir(directory) if f.endswith('.png')]
|
18 |
|
19 |
-
def process_frame(frame, overlay,
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
results = face_mesh.process(rgb_frame)
|
24 |
-
if results.multi_face_landmarks:
|
25 |
zero_overlay = np.zeros_like(rgba_frame)
|
26 |
mesh_points = np.array([np.multiply([p.x, p.y],
|
27 |
-
[width, height]).astype(int) for p in results.
|
28 |
iris_mask_left = np.zeros(rgba_frame.shape, dtype=np.uint8)
|
29 |
iris_mask_right = np.zeros(rgba_frame.shape, dtype=np.uint8)
|
30 |
-
_, re_ratio, le_ratio = blinkRatio(
|
31 |
(l_cx, l_cy), l_radius = cv.minEnclosingCircle(mesh_points[LEFT_IRIS])
|
32 |
(r_cx, r_cy), r_radius = cv.minEnclosingCircle(mesh_points[RIGHT_IRIS])
|
33 |
center_left = (int(l_cx), int(l_cy))
|
@@ -60,116 +64,150 @@ def process_frame(frame, overlay, alpha, LEFT_EYE, RIGHT_EYE, LEFT_IRIS, RIGHT_I
|
|
60 |
return rgba_frame
|
61 |
|
62 |
def process_image(input_image, overlay_file, alpha=0.3):
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
def process_video(input_video, overlay_file, alpha=0.3, output_format='mp4', output_frame_rate=30):
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
processed_frame = cv.cvtColor(processed_frame, cv.COLOR_RGBA2BGR)
|
98 |
out.write(processed_frame)
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
-
# Initialize face mesh once and reuse it
|
108 |
-
mp_face_mesh = mp.solutions.face_mesh
|
109 |
-
face_mesh = mp_face_mesh.FaceMesh(
|
110 |
-
max_num_faces=1,
|
111 |
-
refine_landmarks=True,
|
112 |
-
min_detection_confidence=0.5,
|
113 |
-
min_tracking_confidence=0.5
|
114 |
-
)
|
115 |
|
116 |
-
LEFT_EYE = [362, 382, 381, 380, 374, 373, 390, 249, 263, 466, 388, 387, 386, 385, 384, 398]
|
117 |
-
RIGHT_EYE = [33, 7, 163, 144, 145, 153, 154, 155, 133, 173, 157, 158, 159, 160, 161, 246]
|
118 |
-
LEFT_IRIS = [474, 475, 476, 477]
|
119 |
-
RIGHT_IRIS = [469, 470, 471, 472]
|
120 |
|
121 |
overlay_dir = os.path.join(os.getcwd(),'overlays')
|
122 |
overlay_files = list_overlay_images(overlay_dir)
|
123 |
overlay_choices = [x.split('.png')[0] for x in overlay_files]
|
124 |
-
|
125 |
-
|
126 |
-
# with gr.Row():
|
127 |
-
# overlay_file = gr.Dropdown(choices=overlay_choices, value='Blue', label="Select a color")
|
128 |
-
# # min_detection_confidence = gr.Slider(minimum=0.0, maximum=1.0, value=0.5, label="Min Detection Confidence")
|
129 |
-
# # min_tracking_confidence = gr.Slider(minimum=0.0, maximum=1.0, value=0.5, label="Min Tracking Confidence")
|
130 |
-
# # alpha = gr.Slider(minimum=0.0, maximum=1.0, value=0.3, label="Overlay Transparency")
|
131 |
-
# with gr.Row():
|
132 |
-
# input_image = gr.Image(height=500,width=400,label="Upload Image")
|
133 |
-
# output_image = gr.Image(label="Processed Image")
|
134 |
-
# process_image_btn = gr.Button("Process Image")
|
135 |
-
# process_image_btn.click(process_image,
|
136 |
-
# inputs=[input_image, overlay_file,],
|
137 |
-
# outputs=output_image)
|
138 |
-
|
139 |
-
# with gr.Tab("Video"):
|
140 |
-
# with gr.Row():
|
141 |
-
# overlay_file = gr.Dropdown(choices=overlay_choices, value='Blue', label="Select a color")
|
142 |
-
# # min_detection_confidence = gr.Slider(minimum=0.0, maximum=1.0, value=0.5, label="Min Detection Confidence")
|
143 |
-
# # min_tracking_confidence = gr.Slider(minimum=0.0, maximum=1.0, value=0.5, label="Min Tracking Confidence")
|
144 |
-
# # alpha = gr.Slider(minimum=0.0, maximum=1.0, value=0.3, label="Overlay Transparency")
|
145 |
-
# with gr.Row():
|
146 |
-
# input_video = gr.Video(height=500,width=400,label="Upload Video")
|
147 |
-
# output_video = gr.Video(height=500,label="Processed Video")
|
148 |
-
# process_video_btn = gr.Button("Process Video")
|
149 |
-
# process_video_btn.click(process_video,
|
150 |
-
# inputs=[input_video, overlay_file,],
|
151 |
-
# outputs=output_video)
|
152 |
-
|
153 |
-
# with gr.Tab("Webcam"):
|
154 |
-
# with gr.Row():
|
155 |
-
# overlay_file = gr.Dropdown(choices=overlay_choices, value='Blue', label="Select a color")
|
156 |
-
# # min_detection_confidence = gr.Slider(minimum=0.0, maximum=1.0, value=0.5, label="Min Detection Confidence")
|
157 |
-
# # min_tracking_confidence = gr.Slider(minimum=0.0, maximum=1.0, value=0.5, label="Min Tracking Confidence")
|
158 |
-
# # alpha = gr.Slider(minimum=0.0, maximum=1.0, value=0.3, label="Overlay Transparency")
|
159 |
-
# with gr.Row():
|
160 |
-
# # input_webcam = gr.Video(sources="webcam", label="Webcam")
|
161 |
-
# webcam = gr.Image(sources="webcam",label="Processed Webcam",streaming=True)
|
162 |
-
# process_webcam_btn = gr.Button("Process Webcam")
|
163 |
-
# process_webcam_btn.click(process_webcam,
|
164 |
-
# inputs=[webcam, overlay_file,],
|
165 |
-
# outputs=webcam)
|
166 |
-
|
167 |
-
# demo.launch()
|
168 |
overlay_file = gr.Dropdown(choices=overlay_choices, value='Blue', label="Select a color")
|
169 |
-
|
170 |
process_image,
|
171 |
-
[gr.Image(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
"image",
|
173 |
live=True
|
174 |
)
|
175 |
-
|
|
|
|
|
|
|
|
|
|
4 |
import gradio as gr
|
5 |
import cv2 as cv
|
6 |
import numpy as np
|
7 |
+
import time
|
8 |
import mediapipe as mp
|
9 |
+
from mediapipe.tasks import python
|
10 |
+
from mediapipe.tasks.python import vision
|
11 |
+
|
12 |
+
from utils import blinkRatio,LEFT_EYE,RIGHT_EYE,LEFT_IRIS,RIGHT_IRIS
|
13 |
+
|
14 |
+
|
15 |
|
16 |
def custom_excepthook(type, value, tb):
|
17 |
traceback.print_exception(type, value, tb)
|
|
|
22 |
def list_overlay_images(directory):
|
23 |
return [f for f in os.listdir(directory) if f.endswith('.png')]
|
24 |
|
25 |
+
def process_frame(frame, overlay, results, frame_timestamp_ms=None, task='image', alpha=None):
|
26 |
+
if results.face_landmarks:
|
27 |
+
rgba_frame = cv.cvtColor(frame, cv.COLOR_BGR2RGBA)
|
28 |
+
height, width = rgba_frame.shape[:2]
|
|
|
|
|
29 |
zero_overlay = np.zeros_like(rgba_frame)
|
30 |
mesh_points = np.array([np.multiply([p.x, p.y],
|
31 |
+
[width, height]).astype(int) for p in results.face_landmarks[0]])
|
32 |
iris_mask_left = np.zeros(rgba_frame.shape, dtype=np.uint8)
|
33 |
iris_mask_right = np.zeros(rgba_frame.shape, dtype=np.uint8)
|
34 |
+
_, re_ratio, le_ratio = blinkRatio(frame, mesh_points, RIGHT_EYE, LEFT_EYE)
|
35 |
(l_cx, l_cy), l_radius = cv.minEnclosingCircle(mesh_points[LEFT_IRIS])
|
36 |
(r_cx, r_cy), r_radius = cv.minEnclosingCircle(mesh_points[RIGHT_IRIS])
|
37 |
center_left = (int(l_cx), int(l_cy))
|
|
|
64 |
return rgba_frame
|
65 |
|
66 |
def process_image(input_image, overlay_file, alpha=0.3):
|
67 |
+
model_path = os.path.join(os.getcwd(),'face_landmarker.task')
|
68 |
+
BaseOptions = mp.tasks.BaseOptions
|
69 |
+
FaceLandmarker = mp.tasks.vision.FaceLandmarker
|
70 |
+
FaceLandmarkerOptions = mp.tasks.vision.FaceLandmarkerOptions
|
71 |
+
VisionRunningMode = mp.tasks.vision.RunningMode
|
72 |
+
options = FaceLandmarkerOptions(
|
73 |
+
base_options=BaseOptions(model_asset_path=model_path),
|
74 |
+
running_mode=VisionRunningMode.IMAGE)
|
75 |
+
with FaceLandmarker.create_from_options(options) as landmarker:
|
76 |
+
overlay_file = overlay_file + '.png'
|
77 |
+
overlay_path = os.path.join(os.getcwd(),'overlays', overlay_file)
|
78 |
+
overlay = cv.imread(overlay_path, cv.IMREAD_UNCHANGED)
|
79 |
+
frame = np.array(input_image)
|
80 |
+
if frame.dtype != np.uint8:
|
81 |
+
frame = (frame * 255).astype(np.uint8)
|
82 |
+
rgb_frame = cv.cvtColor(frame, cv.COLOR_BGR2RGB)
|
83 |
+
mp_frame = mp.Image(image_format=mp.ImageFormat.SRGB, data=rgb_frame)
|
84 |
+
results = landmarker.detect(mp_frame)
|
85 |
+
processed_frame = process_frame(frame=frame, overlay=overlay, results=results, alpha=alpha)
|
86 |
+
return cv.cvtColor(processed_frame, cv.COLOR_BGR2RGB)
|
87 |
|
88 |
def process_video(input_video, overlay_file, alpha=0.3, output_format='mp4', output_frame_rate=30):
|
89 |
+
model_path = os.path.join(os.getcwd(), 'face_landmarker.task')
|
90 |
+
BaseOptions = mp.tasks.BaseOptions
|
91 |
+
FaceLandmarker = mp.tasks.vision.FaceLandmarker
|
92 |
+
FaceLandmarkerOptions = mp.tasks.vision.FaceLandmarkerOptions
|
93 |
+
VisionRunningMode = mp.tasks.vision.RunningMode
|
94 |
+
options = FaceLandmarkerOptions(
|
95 |
+
base_options=BaseOptions(model_asset_path=model_path),
|
96 |
+
running_mode=VisionRunningMode.VIDEO)
|
97 |
+
|
98 |
+
with FaceLandmarker.create_from_options(options) as landmarker:
|
99 |
+
overlay_file = overlay_file + '.png'
|
100 |
+
overlay_path = os.path.join(os.getcwd(), 'overlays', overlay_file)
|
101 |
+
overlay = cv.imread(overlay_path, cv.IMREAD_UNCHANGED)
|
102 |
+
cap = cv.VideoCapture(input_video)
|
103 |
+
output_path = os.path.join(os.getcwd(), f'video_processed.{output_format}')
|
104 |
+
|
105 |
+
if overlay is not None and cap.isOpened():
|
106 |
+
fps = int(output_frame_rate) if output_frame_rate > 0 else cap.get(cv.CAP_PROP_FPS)
|
107 |
+
h, w = None, None
|
108 |
+
new_h, new_w = None, None
|
109 |
+
frame_idx = 0
|
110 |
+
fourcc = cv.VideoWriter_fourcc(*'mp4v' if output_format == 'mp4' else 'MJPG')
|
111 |
+
out = cv.VideoWriter(output_path, fourcc, fps, (new_w, new_h))
|
112 |
+
start_time = time.time()
|
113 |
+
|
114 |
+
while cap.isOpened():
|
115 |
+
ret, frame = cap.read()
|
116 |
+
if not ret:
|
117 |
+
break
|
118 |
+
if h is None or w is None:
|
119 |
+
h, w, _ = frame.shape
|
120 |
+
new_h = 800
|
121 |
+
new_w = int((w / h) * new_h)
|
122 |
+
out = cv.VideoWriter(output_path, fourcc, fps, (new_w, new_h)) # Initialize output writer with correct size
|
123 |
+
frame = cv.resize(frame, (new_w, new_h), interpolation=cv.INTER_NEAREST)
|
124 |
+
if frame.dtype != np.uint8:
|
125 |
+
frame = (frame * 255).astype(np.uint8)
|
126 |
+
rgb_frame = cv.cvtColor(frame, cv.COLOR_BGR2RGB)
|
127 |
+
mp_frame = mp.Image(image_format=mp.ImageFormat.SRGB, data=rgb_frame)
|
128 |
+
timestamp = int(frame_idx * 1000 / fps) # Convert frame index to milliseconds
|
129 |
+
results = landmarker.detect_for_video(mp_frame, timestamp)
|
130 |
+
processed_frame = process_frame(frame=frame, overlay=overlay, results=results, alpha=alpha)
|
131 |
processed_frame = cv.cvtColor(processed_frame, cv.COLOR_RGBA2BGR)
|
132 |
out.write(processed_frame)
|
133 |
+
frame_idx += 1
|
134 |
+
|
135 |
+
cap.release()
|
136 |
+
out.release()
|
137 |
+
|
138 |
+
end_time = time.time()
|
139 |
+
execution_time = end_time - start_time
|
140 |
+
print(f"Execution time: {execution_time} seconds")
|
141 |
+
|
142 |
+
return output_path
|
143 |
|
144 |
|
145 |
+
def process_webcam(frame, overlay_file, alpha=0.3, min_detection_confidence=0.5, min_tracking_confidence=0.5):
|
146 |
+
BaseOptions = mp.tasks.BaseOptions
|
147 |
+
FaceLandmarker = mp.tasks.vision.FaceLandmarker
|
148 |
+
FaceLandmarkerOptions = mp.tasks.vision.FaceLandmarkerOptions
|
149 |
+
FaceLandmarkerResult = mp.tasks.vision.FaceLandmarkerResult
|
150 |
+
VisionRunningMode = mp.tasks.vision.RunningMode
|
151 |
+
|
152 |
+
model_path = os.path.join(os.getcwd(), 'face_landmarker.task')
|
153 |
+
overlay_file = overlay_file + '.png'
|
154 |
+
overlay_path = os.path.join(os.getcwd(), overlay_file)
|
155 |
+
overlay = cv.imread(overlay_path, cv.IMREAD_UNCHANGED)
|
156 |
+
|
157 |
+
global latest_results
|
158 |
+
latest_results = None
|
159 |
+
|
160 |
+
def return_result(result: FaceLandmarkerResult, output_image: mp.Image, timestamp_ms: int):
|
161 |
+
global latest_results
|
162 |
+
latest_results = result
|
163 |
+
|
164 |
+
options = FaceLandmarkerOptions(
|
165 |
+
base_options=BaseOptions(model_asset_path=model_path),
|
166 |
+
running_mode=VisionRunningMode.LIVE_STREAM,
|
167 |
+
result_callback=return_result)
|
168 |
+
|
169 |
+
with FaceLandmarker.create_from_options(options) as landmarker:
|
170 |
+
timestamp_ms = int(time.time() * 1000) # Current time in milliseconds
|
171 |
+
mp_image = mp.Image(image_format=mp.ImageFormat.SRGB, data=frame)
|
172 |
+
landmarker.detect_async(mp_image, timestamp_ms)
|
173 |
+
|
174 |
+
while latest_results is None:
|
175 |
+
time.sleep(0.01) # Wait for the result to be available
|
176 |
+
|
177 |
+
processed_frame = process_frame(frame, overlay, latest_results, alpha)
|
178 |
+
return processed_frame
|
179 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
|
|
|
|
|
|
|
|
|
181 |
|
182 |
overlay_dir = os.path.join(os.getcwd(),'overlays')
|
183 |
overlay_files = list_overlay_images(overlay_dir)
|
184 |
overlay_choices = [x.split('.png')[0] for x in overlay_files]
|
185 |
+
|
186 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
overlay_file = gr.Dropdown(choices=overlay_choices, value='Blue', label="Select a color")
|
188 |
+
image_interface = gr.Interface(
|
189 |
process_image,
|
190 |
+
[gr.Image(height=500,label="Upload Image"),
|
191 |
+
gr.Dropdown(choices=overlay_choices, value='Blue', label="Select a color")],
|
192 |
+
gr.Image(height=500),
|
193 |
+
)
|
194 |
+
|
195 |
+
video_interface = gr.Interface(
|
196 |
+
process_video,
|
197 |
+
[gr.Video(height=500,label="Upload Video"),
|
198 |
+
gr.Dropdown(choices=overlay_choices, value='Blue', label="Select a color")],
|
199 |
+
gr.Video(height=500,label="Processed Video"),
|
200 |
+
)
|
201 |
+
|
202 |
+
webcam_interface = gr.Interface(
|
203 |
+
process_webcam,
|
204 |
+
[gr.Image(sources=["webcam"], streaming=True),
|
205 |
+
gr.Dropdown(choices=overlay_choices, value='Blue', label="Select a color")],
|
206 |
"image",
|
207 |
live=True
|
208 |
)
|
209 |
+
|
210 |
+
demo = gr.TabbedInterface([image_interface,video_interface,webcam_interface],['Image','Video','Webcam'])
|
211 |
+
|
212 |
+
|
213 |
+
demo.launch()
|