Spaces:
Sleeping
Sleeping
File size: 1,210 Bytes
4a4dd26 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
# -*- coding: utf-8 -*-
"""app.py
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1S9PpwawHnbXVESdJgwe2rOXa7D-H4_7R
"""
import gradio as gr
from transformers import pipeline
# Load the fine-tuned model and tokenizer
classifier = pipeline("text-classification", model="Mehdi009/Antisemitism_Harassment_Detection")
# Function to make predictions
def predict_antisemitism(text):
result = classifier(text)
label = result[0]['label']
score = result[0]['score']
return {label: round(score, 4)}
# Create Gradio Interface
iface = gr.Interface(
fn=predict_antisemitism,
inputs=gr.Textbox(lines=2, placeholder="Enter a tweet here..."),
outputs=gr.Label(num_top_classes=2),
title="Antisemitism Harassment Detection",
description="Enter a tweet or sentence, and the model will predict whether it contains antisemitic harassment.",
examples=[
["Jews control the media and banks."],
["I support Israel’s right to exist and defend itself."],
["Zionazi are ruining everything!"],
["We need more understanding and less hate."]
]
)
# Launch the demo
iface.launch(debug=True,share=True) |