Spaces:
Runtime error
Runtime error
Upload 3 files
Browse files- kokoro-v0_19.pth +3 -0
- kokoro.py +165 -0
- models.py +372 -0
kokoro-v0_19.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3b0c392f87508da38fad3a2f9d94c359f1b657ebd2ef79f9d56d69503e470b0a
|
3 |
+
size 327211206
|
kokoro.py
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import phonemizer
|
2 |
+
import re
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
def split_num(num):
|
7 |
+
num = num.group()
|
8 |
+
if '.' in num:
|
9 |
+
return num
|
10 |
+
elif ':' in num:
|
11 |
+
h, m = [int(n) for n in num.split(':')]
|
12 |
+
if m == 0:
|
13 |
+
return f"{h} o'clock"
|
14 |
+
elif m < 10:
|
15 |
+
return f'{h} oh {m}'
|
16 |
+
return f'{h} {m}'
|
17 |
+
year = int(num[:4])
|
18 |
+
if year < 1100 or year % 1000 < 10:
|
19 |
+
return num
|
20 |
+
left, right = num[:2], int(num[2:4])
|
21 |
+
s = 's' if num.endswith('s') else ''
|
22 |
+
if 100 <= year % 1000 <= 999:
|
23 |
+
if right == 0:
|
24 |
+
return f'{left} hundred{s}'
|
25 |
+
elif right < 10:
|
26 |
+
return f'{left} oh {right}{s}'
|
27 |
+
return f'{left} {right}{s}'
|
28 |
+
|
29 |
+
def flip_money(m):
|
30 |
+
m = m.group()
|
31 |
+
bill = 'dollar' if m[0] == '$' else 'pound'
|
32 |
+
if m[-1].isalpha():
|
33 |
+
return f'{m[1:]} {bill}s'
|
34 |
+
elif '.' not in m:
|
35 |
+
s = '' if m[1:] == '1' else 's'
|
36 |
+
return f'{m[1:]} {bill}{s}'
|
37 |
+
b, c = m[1:].split('.')
|
38 |
+
s = '' if b == '1' else 's'
|
39 |
+
c = int(c.ljust(2, '0'))
|
40 |
+
coins = f"cent{'' if c == 1 else 's'}" if m[0] == '$' else ('penny' if c == 1 else 'pence')
|
41 |
+
return f'{b} {bill}{s} and {c} {coins}'
|
42 |
+
|
43 |
+
def point_num(num):
|
44 |
+
a, b = num.group().split('.')
|
45 |
+
return ' point '.join([a, ' '.join(b)])
|
46 |
+
|
47 |
+
def normalize_text(text):
|
48 |
+
text = text.replace(chr(8216), "'").replace(chr(8217), "'")
|
49 |
+
text = text.replace('«', chr(8220)).replace('»', chr(8221))
|
50 |
+
text = text.replace(chr(8220), '"').replace(chr(8221), '"')
|
51 |
+
text = text.replace('(', '«').replace(')', '»')
|
52 |
+
for a, b in zip('、。!,:;?', ',.!,:;?'):
|
53 |
+
text = text.replace(a, b+' ')
|
54 |
+
text = re.sub(r'[^\S \n]', ' ', text)
|
55 |
+
text = re.sub(r' +', ' ', text)
|
56 |
+
text = re.sub(r'(?<=\n) +(?=\n)', '', text)
|
57 |
+
text = re.sub(r'\bD[Rr]\.(?= [A-Z])', 'Doctor', text)
|
58 |
+
text = re.sub(r'\b(?:Mr\.|MR\.(?= [A-Z]))', 'Mister', text)
|
59 |
+
text = re.sub(r'\b(?:Ms\.|MS\.(?= [A-Z]))', 'Miss', text)
|
60 |
+
text = re.sub(r'\b(?:Mrs\.|MRS\.(?= [A-Z]))', 'Mrs', text)
|
61 |
+
text = re.sub(r'\betc\.(?! [A-Z])', 'etc', text)
|
62 |
+
text = re.sub(r'(?i)\b(y)eah?\b', r"\1e'a", text)
|
63 |
+
text = re.sub(r'\d*\.\d+|\b\d{4}s?\b|(?<!:)\b(?:[1-9]|1[0-2]):[0-5]\d\b(?!:)', split_num, text)
|
64 |
+
text = re.sub(r'(?<=\d),(?=\d)', '', text)
|
65 |
+
text = re.sub(r'(?i)[$£]\d+(?:\.\d+)?(?: hundred| thousand| (?:[bm]|tr)illion)*\b|[$£]\d+\.\d\d?\b', flip_money, text)
|
66 |
+
text = re.sub(r'\d*\.\d+', point_num, text)
|
67 |
+
text = re.sub(r'(?<=\d)-(?=\d)', ' to ', text)
|
68 |
+
text = re.sub(r'(?<=\d)S', ' S', text)
|
69 |
+
text = re.sub(r"(?<=[BCDFGHJ-NP-TV-Z])'?s\b", "'S", text)
|
70 |
+
text = re.sub(r"(?<=X')S\b", 's', text)
|
71 |
+
text = re.sub(r'(?:[A-Za-z]\.){2,} [a-z]', lambda m: m.group().replace('.', '-'), text)
|
72 |
+
text = re.sub(r'(?i)(?<=[A-Z])\.(?=[A-Z])', '-', text)
|
73 |
+
return text.strip()
|
74 |
+
|
75 |
+
def get_vocab():
|
76 |
+
_pad = "$"
|
77 |
+
_punctuation = ';:,.!?¡¿—…"«»“” '
|
78 |
+
_letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
|
79 |
+
_letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
|
80 |
+
symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa)
|
81 |
+
dicts = {}
|
82 |
+
for i in range(len((symbols))):
|
83 |
+
dicts[symbols[i]] = i
|
84 |
+
return dicts
|
85 |
+
|
86 |
+
VOCAB = get_vocab()
|
87 |
+
def tokenize(ps):
|
88 |
+
return [i for i in map(VOCAB.get, ps) if i is not None]
|
89 |
+
|
90 |
+
phonemizers = dict(
|
91 |
+
a=phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True, with_stress=True),
|
92 |
+
b=phonemizer.backend.EspeakBackend(language='en-gb', preserve_punctuation=True, with_stress=True),
|
93 |
+
)
|
94 |
+
def phonemize(text, lang, norm=True):
|
95 |
+
if norm:
|
96 |
+
text = normalize_text(text)
|
97 |
+
ps = phonemizers[lang].phonemize([text])
|
98 |
+
ps = ps[0] if ps else ''
|
99 |
+
# https://en.wiktionary.org/wiki/kokoro#English
|
100 |
+
ps = ps.replace('kəkˈoːɹoʊ', 'kˈoʊkəɹoʊ').replace('kəkˈɔːɹəʊ', 'kˈəʊkəɹəʊ')
|
101 |
+
ps = ps.replace('ʲ', 'j').replace('r', 'ɹ').replace('x', 'k').replace('ɬ', 'l')
|
102 |
+
ps = re.sub(r'(?<=[a-zɹː])(?=hˈʌndɹɪd)', ' ', ps)
|
103 |
+
ps = re.sub(r' z(?=[;:,.!?¡¿—…"«»“” ]|$)', 'z', ps)
|
104 |
+
if lang == 'a':
|
105 |
+
ps = re.sub(r'(?<=nˈaɪn)ti(?!ː)', 'di', ps)
|
106 |
+
ps = ''.join(filter(lambda p: p in VOCAB, ps))
|
107 |
+
return ps.strip()
|
108 |
+
|
109 |
+
def length_to_mask(lengths):
|
110 |
+
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
|
111 |
+
mask = torch.gt(mask+1, lengths.unsqueeze(1))
|
112 |
+
return mask
|
113 |
+
|
114 |
+
@torch.no_grad()
|
115 |
+
def forward(model, tokens, ref_s, speed):
|
116 |
+
device = ref_s.device
|
117 |
+
tokens = torch.LongTensor([[0, *tokens, 0]]).to(device)
|
118 |
+
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device)
|
119 |
+
text_mask = length_to_mask(input_lengths).to(device)
|
120 |
+
bert_dur = model.bert(tokens, attention_mask=(~text_mask).int())
|
121 |
+
d_en = model.bert_encoder(bert_dur).transpose(-1, -2)
|
122 |
+
s = ref_s[:, 128:]
|
123 |
+
d = model.predictor.text_encoder(d_en, s, input_lengths, text_mask)
|
124 |
+
x, _ = model.predictor.lstm(d)
|
125 |
+
duration = model.predictor.duration_proj(x)
|
126 |
+
duration = torch.sigmoid(duration).sum(axis=-1) / speed
|
127 |
+
pred_dur = torch.round(duration).clamp(min=1).long()
|
128 |
+
pred_aln_trg = torch.zeros(input_lengths, pred_dur.sum().item())
|
129 |
+
c_frame = 0
|
130 |
+
for i in range(pred_aln_trg.size(0)):
|
131 |
+
pred_aln_trg[i, c_frame:c_frame + pred_dur[0,i].item()] = 1
|
132 |
+
c_frame += pred_dur[0,i].item()
|
133 |
+
en = d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device)
|
134 |
+
F0_pred, N_pred = model.predictor.F0Ntrain(en, s)
|
135 |
+
t_en = model.text_encoder(tokens, input_lengths, text_mask)
|
136 |
+
asr = t_en @ pred_aln_trg.unsqueeze(0).to(device)
|
137 |
+
return model.decoder(asr, F0_pred, N_pred, ref_s[:, :128]).squeeze().cpu().numpy()
|
138 |
+
|
139 |
+
def generate(model, text, voicepack, lang='a', speed=1, ps=None):
|
140 |
+
ps = ps or phonemize(text, lang)
|
141 |
+
tokens = tokenize(ps)
|
142 |
+
if not tokens:
|
143 |
+
return None
|
144 |
+
elif len(tokens) > 510:
|
145 |
+
tokens = tokens[:510]
|
146 |
+
print('Truncated to 510 tokens')
|
147 |
+
ref_s = voicepack[len(tokens)]
|
148 |
+
out = forward(model, tokens, ref_s, speed)
|
149 |
+
ps = ''.join(next(k for k, v in VOCAB.items() if i == v) for i in tokens)
|
150 |
+
return out, ps
|
151 |
+
|
152 |
+
def generate_full(model, text, voicepack, lang='a', speed=1, ps=None):
|
153 |
+
ps = ps or phonemize(text, lang)
|
154 |
+
tokens = tokenize(ps)
|
155 |
+
if not tokens:
|
156 |
+
return None
|
157 |
+
outs = []
|
158 |
+
loop_count = len(tokens)//510 + (1 if len(tokens) % 510 != 0 else 0)
|
159 |
+
for i in range(loop_count):
|
160 |
+
ref_s = voicepack[len(tokens[i*510:(i+1)*510])]
|
161 |
+
out = forward(model, tokens[i*510:(i+1)*510], ref_s, speed)
|
162 |
+
outs.append(out)
|
163 |
+
outs = np.concatenate(outs)
|
164 |
+
ps = ''.join(next(k for k, v in VOCAB.items() if i == v) for i in tokens)
|
165 |
+
return outs, ps
|
models.py
ADDED
@@ -0,0 +1,372 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# https://github.com/yl4579/StyleTTS2/blob/main/models.py
|
2 |
+
from istftnet import AdaIN1d, Decoder
|
3 |
+
from munch import Munch
|
4 |
+
from pathlib import Path
|
5 |
+
from plbert import load_plbert
|
6 |
+
from torch.nn.utils import weight_norm, spectral_norm
|
7 |
+
import json
|
8 |
+
import numpy as np
|
9 |
+
import os
|
10 |
+
import os.path as osp
|
11 |
+
import torch
|
12 |
+
import torch.nn as nn
|
13 |
+
import torch.nn.functional as F
|
14 |
+
|
15 |
+
class LinearNorm(torch.nn.Module):
|
16 |
+
def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'):
|
17 |
+
super(LinearNorm, self).__init__()
|
18 |
+
self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias)
|
19 |
+
|
20 |
+
torch.nn.init.xavier_uniform_(
|
21 |
+
self.linear_layer.weight,
|
22 |
+
gain=torch.nn.init.calculate_gain(w_init_gain))
|
23 |
+
|
24 |
+
def forward(self, x):
|
25 |
+
return self.linear_layer(x)
|
26 |
+
|
27 |
+
class LayerNorm(nn.Module):
|
28 |
+
def __init__(self, channels, eps=1e-5):
|
29 |
+
super().__init__()
|
30 |
+
self.channels = channels
|
31 |
+
self.eps = eps
|
32 |
+
|
33 |
+
self.gamma = nn.Parameter(torch.ones(channels))
|
34 |
+
self.beta = nn.Parameter(torch.zeros(channels))
|
35 |
+
|
36 |
+
def forward(self, x):
|
37 |
+
x = x.transpose(1, -1)
|
38 |
+
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
39 |
+
return x.transpose(1, -1)
|
40 |
+
|
41 |
+
class TextEncoder(nn.Module):
|
42 |
+
def __init__(self, channels, kernel_size, depth, n_symbols, actv=nn.LeakyReLU(0.2)):
|
43 |
+
super().__init__()
|
44 |
+
self.embedding = nn.Embedding(n_symbols, channels)
|
45 |
+
|
46 |
+
padding = (kernel_size - 1) // 2
|
47 |
+
self.cnn = nn.ModuleList()
|
48 |
+
for _ in range(depth):
|
49 |
+
self.cnn.append(nn.Sequential(
|
50 |
+
weight_norm(nn.Conv1d(channels, channels, kernel_size=kernel_size, padding=padding)),
|
51 |
+
LayerNorm(channels),
|
52 |
+
actv,
|
53 |
+
nn.Dropout(0.2),
|
54 |
+
))
|
55 |
+
# self.cnn = nn.Sequential(*self.cnn)
|
56 |
+
|
57 |
+
self.lstm = nn.LSTM(channels, channels//2, 1, batch_first=True, bidirectional=True)
|
58 |
+
|
59 |
+
def forward(self, x, input_lengths, m):
|
60 |
+
x = self.embedding(x) # [B, T, emb]
|
61 |
+
x = x.transpose(1, 2) # [B, emb, T]
|
62 |
+
m = m.to(input_lengths.device).unsqueeze(1)
|
63 |
+
x.masked_fill_(m, 0.0)
|
64 |
+
|
65 |
+
for c in self.cnn:
|
66 |
+
x = c(x)
|
67 |
+
x.masked_fill_(m, 0.0)
|
68 |
+
|
69 |
+
x = x.transpose(1, 2) # [B, T, chn]
|
70 |
+
|
71 |
+
input_lengths = input_lengths.cpu().numpy()
|
72 |
+
x = nn.utils.rnn.pack_padded_sequence(
|
73 |
+
x, input_lengths, batch_first=True, enforce_sorted=False)
|
74 |
+
|
75 |
+
self.lstm.flatten_parameters()
|
76 |
+
x, _ = self.lstm(x)
|
77 |
+
x, _ = nn.utils.rnn.pad_packed_sequence(
|
78 |
+
x, batch_first=True)
|
79 |
+
|
80 |
+
x = x.transpose(-1, -2)
|
81 |
+
x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]])
|
82 |
+
|
83 |
+
x_pad[:, :, :x.shape[-1]] = x
|
84 |
+
x = x_pad.to(x.device)
|
85 |
+
|
86 |
+
x.masked_fill_(m, 0.0)
|
87 |
+
|
88 |
+
return x
|
89 |
+
|
90 |
+
def inference(self, x):
|
91 |
+
x = self.embedding(x)
|
92 |
+
x = x.transpose(1, 2)
|
93 |
+
x = self.cnn(x)
|
94 |
+
x = x.transpose(1, 2)
|
95 |
+
self.lstm.flatten_parameters()
|
96 |
+
x, _ = self.lstm(x)
|
97 |
+
return x
|
98 |
+
|
99 |
+
def length_to_mask(self, lengths):
|
100 |
+
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
|
101 |
+
mask = torch.gt(mask+1, lengths.unsqueeze(1))
|
102 |
+
return mask
|
103 |
+
|
104 |
+
|
105 |
+
class UpSample1d(nn.Module):
|
106 |
+
def __init__(self, layer_type):
|
107 |
+
super().__init__()
|
108 |
+
self.layer_type = layer_type
|
109 |
+
|
110 |
+
def forward(self, x):
|
111 |
+
if self.layer_type == 'none':
|
112 |
+
return x
|
113 |
+
else:
|
114 |
+
return F.interpolate(x, scale_factor=2, mode='nearest')
|
115 |
+
|
116 |
+
class AdainResBlk1d(nn.Module):
|
117 |
+
def __init__(self, dim_in, dim_out, style_dim=64, actv=nn.LeakyReLU(0.2),
|
118 |
+
upsample='none', dropout_p=0.0):
|
119 |
+
super().__init__()
|
120 |
+
self.actv = actv
|
121 |
+
self.upsample_type = upsample
|
122 |
+
self.upsample = UpSample1d(upsample)
|
123 |
+
self.learned_sc = dim_in != dim_out
|
124 |
+
self._build_weights(dim_in, dim_out, style_dim)
|
125 |
+
self.dropout = nn.Dropout(dropout_p)
|
126 |
+
|
127 |
+
if upsample == 'none':
|
128 |
+
self.pool = nn.Identity()
|
129 |
+
else:
|
130 |
+
self.pool = weight_norm(nn.ConvTranspose1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1, output_padding=1))
|
131 |
+
|
132 |
+
|
133 |
+
def _build_weights(self, dim_in, dim_out, style_dim):
|
134 |
+
self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
|
135 |
+
self.conv2 = weight_norm(nn.Conv1d(dim_out, dim_out, 3, 1, 1))
|
136 |
+
self.norm1 = AdaIN1d(style_dim, dim_in)
|
137 |
+
self.norm2 = AdaIN1d(style_dim, dim_out)
|
138 |
+
if self.learned_sc:
|
139 |
+
self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False))
|
140 |
+
|
141 |
+
def _shortcut(self, x):
|
142 |
+
x = self.upsample(x)
|
143 |
+
if self.learned_sc:
|
144 |
+
x = self.conv1x1(x)
|
145 |
+
return x
|
146 |
+
|
147 |
+
def _residual(self, x, s):
|
148 |
+
x = self.norm1(x, s)
|
149 |
+
x = self.actv(x)
|
150 |
+
x = self.pool(x)
|
151 |
+
x = self.conv1(self.dropout(x))
|
152 |
+
x = self.norm2(x, s)
|
153 |
+
x = self.actv(x)
|
154 |
+
x = self.conv2(self.dropout(x))
|
155 |
+
return x
|
156 |
+
|
157 |
+
def forward(self, x, s):
|
158 |
+
out = self._residual(x, s)
|
159 |
+
out = (out + self._shortcut(x)) / np.sqrt(2)
|
160 |
+
return out
|
161 |
+
|
162 |
+
class AdaLayerNorm(nn.Module):
|
163 |
+
def __init__(self, style_dim, channels, eps=1e-5):
|
164 |
+
super().__init__()
|
165 |
+
self.channels = channels
|
166 |
+
self.eps = eps
|
167 |
+
|
168 |
+
self.fc = nn.Linear(style_dim, channels*2)
|
169 |
+
|
170 |
+
def forward(self, x, s):
|
171 |
+
x = x.transpose(-1, -2)
|
172 |
+
x = x.transpose(1, -1)
|
173 |
+
|
174 |
+
h = self.fc(s)
|
175 |
+
h = h.view(h.size(0), h.size(1), 1)
|
176 |
+
gamma, beta = torch.chunk(h, chunks=2, dim=1)
|
177 |
+
gamma, beta = gamma.transpose(1, -1), beta.transpose(1, -1)
|
178 |
+
|
179 |
+
|
180 |
+
x = F.layer_norm(x, (self.channels,), eps=self.eps)
|
181 |
+
x = (1 + gamma) * x + beta
|
182 |
+
return x.transpose(1, -1).transpose(-1, -2)
|
183 |
+
|
184 |
+
class ProsodyPredictor(nn.Module):
|
185 |
+
|
186 |
+
def __init__(self, style_dim, d_hid, nlayers, max_dur=50, dropout=0.1):
|
187 |
+
super().__init__()
|
188 |
+
|
189 |
+
self.text_encoder = DurationEncoder(sty_dim=style_dim,
|
190 |
+
d_model=d_hid,
|
191 |
+
nlayers=nlayers,
|
192 |
+
dropout=dropout)
|
193 |
+
|
194 |
+
self.lstm = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True)
|
195 |
+
self.duration_proj = LinearNorm(d_hid, max_dur)
|
196 |
+
|
197 |
+
self.shared = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True)
|
198 |
+
self.F0 = nn.ModuleList()
|
199 |
+
self.F0.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout))
|
200 |
+
self.F0.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout))
|
201 |
+
self.F0.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout))
|
202 |
+
|
203 |
+
self.N = nn.ModuleList()
|
204 |
+
self.N.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout))
|
205 |
+
self.N.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout))
|
206 |
+
self.N.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout))
|
207 |
+
|
208 |
+
self.F0_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0)
|
209 |
+
self.N_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0)
|
210 |
+
|
211 |
+
|
212 |
+
def forward(self, texts, style, text_lengths, alignment, m):
|
213 |
+
d = self.text_encoder(texts, style, text_lengths, m)
|
214 |
+
|
215 |
+
batch_size = d.shape[0]
|
216 |
+
text_size = d.shape[1]
|
217 |
+
|
218 |
+
# predict duration
|
219 |
+
input_lengths = text_lengths.cpu().numpy()
|
220 |
+
x = nn.utils.rnn.pack_padded_sequence(
|
221 |
+
d, input_lengths, batch_first=True, enforce_sorted=False)
|
222 |
+
|
223 |
+
m = m.to(text_lengths.device).unsqueeze(1)
|
224 |
+
|
225 |
+
self.lstm.flatten_parameters()
|
226 |
+
x, _ = self.lstm(x)
|
227 |
+
x, _ = nn.utils.rnn.pad_packed_sequence(
|
228 |
+
x, batch_first=True)
|
229 |
+
|
230 |
+
x_pad = torch.zeros([x.shape[0], m.shape[-1], x.shape[-1]])
|
231 |
+
|
232 |
+
x_pad[:, :x.shape[1], :] = x
|
233 |
+
x = x_pad.to(x.device)
|
234 |
+
|
235 |
+
duration = self.duration_proj(nn.functional.dropout(x, 0.5, training=self.training))
|
236 |
+
|
237 |
+
en = (d.transpose(-1, -2) @ alignment)
|
238 |
+
|
239 |
+
return duration.squeeze(-1), en
|
240 |
+
|
241 |
+
def F0Ntrain(self, x, s):
|
242 |
+
x, _ = self.shared(x.transpose(-1, -2))
|
243 |
+
|
244 |
+
F0 = x.transpose(-1, -2)
|
245 |
+
for block in self.F0:
|
246 |
+
F0 = block(F0, s)
|
247 |
+
F0 = self.F0_proj(F0)
|
248 |
+
|
249 |
+
N = x.transpose(-1, -2)
|
250 |
+
for block in self.N:
|
251 |
+
N = block(N, s)
|
252 |
+
N = self.N_proj(N)
|
253 |
+
|
254 |
+
return F0.squeeze(1), N.squeeze(1)
|
255 |
+
|
256 |
+
def length_to_mask(self, lengths):
|
257 |
+
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
|
258 |
+
mask = torch.gt(mask+1, lengths.unsqueeze(1))
|
259 |
+
return mask
|
260 |
+
|
261 |
+
class DurationEncoder(nn.Module):
|
262 |
+
|
263 |
+
def __init__(self, sty_dim, d_model, nlayers, dropout=0.1):
|
264 |
+
super().__init__()
|
265 |
+
self.lstms = nn.ModuleList()
|
266 |
+
for _ in range(nlayers):
|
267 |
+
self.lstms.append(nn.LSTM(d_model + sty_dim,
|
268 |
+
d_model // 2,
|
269 |
+
num_layers=1,
|
270 |
+
batch_first=True,
|
271 |
+
bidirectional=True,
|
272 |
+
dropout=dropout))
|
273 |
+
self.lstms.append(AdaLayerNorm(sty_dim, d_model))
|
274 |
+
|
275 |
+
|
276 |
+
self.dropout = dropout
|
277 |
+
self.d_model = d_model
|
278 |
+
self.sty_dim = sty_dim
|
279 |
+
|
280 |
+
def forward(self, x, style, text_lengths, m):
|
281 |
+
masks = m.to(text_lengths.device)
|
282 |
+
|
283 |
+
x = x.permute(2, 0, 1)
|
284 |
+
s = style.expand(x.shape[0], x.shape[1], -1)
|
285 |
+
x = torch.cat([x, s], axis=-1)
|
286 |
+
x.masked_fill_(masks.unsqueeze(-1).transpose(0, 1), 0.0)
|
287 |
+
|
288 |
+
x = x.transpose(0, 1)
|
289 |
+
input_lengths = text_lengths.cpu().numpy()
|
290 |
+
x = x.transpose(-1, -2)
|
291 |
+
|
292 |
+
for block in self.lstms:
|
293 |
+
if isinstance(block, AdaLayerNorm):
|
294 |
+
x = block(x.transpose(-1, -2), style).transpose(-1, -2)
|
295 |
+
x = torch.cat([x, s.permute(1, -1, 0)], axis=1)
|
296 |
+
x.masked_fill_(masks.unsqueeze(-1).transpose(-1, -2), 0.0)
|
297 |
+
else:
|
298 |
+
x = x.transpose(-1, -2)
|
299 |
+
x = nn.utils.rnn.pack_padded_sequence(
|
300 |
+
x, input_lengths, batch_first=True, enforce_sorted=False)
|
301 |
+
block.flatten_parameters()
|
302 |
+
x, _ = block(x)
|
303 |
+
x, _ = nn.utils.rnn.pad_packed_sequence(
|
304 |
+
x, batch_first=True)
|
305 |
+
x = F.dropout(x, p=self.dropout, training=self.training)
|
306 |
+
x = x.transpose(-1, -2)
|
307 |
+
|
308 |
+
x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]])
|
309 |
+
|
310 |
+
x_pad[:, :, :x.shape[-1]] = x
|
311 |
+
x = x_pad.to(x.device)
|
312 |
+
|
313 |
+
return x.transpose(-1, -2)
|
314 |
+
|
315 |
+
def inference(self, x, style):
|
316 |
+
x = self.embedding(x.transpose(-1, -2)) * np.sqrt(self.d_model)
|
317 |
+
style = style.expand(x.shape[0], x.shape[1], -1)
|
318 |
+
x = torch.cat([x, style], axis=-1)
|
319 |
+
src = self.pos_encoder(x)
|
320 |
+
output = self.transformer_encoder(src).transpose(0, 1)
|
321 |
+
return output
|
322 |
+
|
323 |
+
def length_to_mask(self, lengths):
|
324 |
+
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
|
325 |
+
mask = torch.gt(mask+1, lengths.unsqueeze(1))
|
326 |
+
return mask
|
327 |
+
|
328 |
+
# https://github.com/yl4579/StyleTTS2/blob/main/utils.py
|
329 |
+
def recursive_munch(d):
|
330 |
+
if isinstance(d, dict):
|
331 |
+
return Munch((k, recursive_munch(v)) for k, v in d.items())
|
332 |
+
elif isinstance(d, list):
|
333 |
+
return [recursive_munch(v) for v in d]
|
334 |
+
else:
|
335 |
+
return d
|
336 |
+
|
337 |
+
def build_model(path, device):
|
338 |
+
config = Path(__file__).parent / 'config.json'
|
339 |
+
assert config.exists(), f'Config path incorrect: config.json not found at {config}'
|
340 |
+
with open(config, 'r') as r:
|
341 |
+
args = recursive_munch(json.load(r))
|
342 |
+
assert args.decoder.type == 'istftnet', f'Unknown decoder type: {args.decoder.type}'
|
343 |
+
decoder = Decoder(dim_in=args.hidden_dim, style_dim=args.style_dim, dim_out=args.n_mels,
|
344 |
+
resblock_kernel_sizes = args.decoder.resblock_kernel_sizes,
|
345 |
+
upsample_rates = args.decoder.upsample_rates,
|
346 |
+
upsample_initial_channel=args.decoder.upsample_initial_channel,
|
347 |
+
resblock_dilation_sizes=args.decoder.resblock_dilation_sizes,
|
348 |
+
upsample_kernel_sizes=args.decoder.upsample_kernel_sizes,
|
349 |
+
gen_istft_n_fft=args.decoder.gen_istft_n_fft, gen_istft_hop_size=args.decoder.gen_istft_hop_size)
|
350 |
+
text_encoder = TextEncoder(channels=args.hidden_dim, kernel_size=5, depth=args.n_layer, n_symbols=args.n_token)
|
351 |
+
predictor = ProsodyPredictor(style_dim=args.style_dim, d_hid=args.hidden_dim, nlayers=args.n_layer, max_dur=args.max_dur, dropout=args.dropout)
|
352 |
+
bert = load_plbert()
|
353 |
+
bert_encoder = nn.Linear(bert.config.hidden_size, args.hidden_dim)
|
354 |
+
for parent in [bert, bert_encoder, predictor, decoder, text_encoder]:
|
355 |
+
for child in parent.children():
|
356 |
+
if isinstance(child, nn.RNNBase):
|
357 |
+
child.flatten_parameters()
|
358 |
+
model = Munch(
|
359 |
+
bert=bert.to(device).eval(),
|
360 |
+
bert_encoder=bert_encoder.to(device).eval(),
|
361 |
+
predictor=predictor.to(device).eval(),
|
362 |
+
decoder=decoder.to(device).eval(),
|
363 |
+
text_encoder=text_encoder.to(device).eval(),
|
364 |
+
)
|
365 |
+
for key, state_dict in torch.load(path, map_location='cpu', weights_only=True)['net'].items():
|
366 |
+
assert key in model, key
|
367 |
+
try:
|
368 |
+
model[key].load_state_dict(state_dict)
|
369 |
+
except:
|
370 |
+
state_dict = {k[7:]: v for k, v in state_dict.items()}
|
371 |
+
model[key].load_state_dict(state_dict, strict=False)
|
372 |
+
return model
|