File size: 9,293 Bytes
f646433
40457bb
 
 
55575a2
239ed62
25bf878
55575a2
239ed62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecfb95b
 
 
 
 
 
 
 
239ed62
ecfb95b
 
239ed62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecfb95b
40457bb
3a7ee34
f646433
 
e2138e2
40457bb
 
77414f0
 
f80cc6e
8c287bb
40457bb
 
77414f0
40457bb
 
 
 
f646433
 
40457bb
 
ea8e426
 
40457bb
d80f274
 
 
 
 
40457bb
 
d80f274
40457bb
 
 
 
b584574
239ed62
 
 
 
 
 
 
ecfb95b
239ed62
ecfb95b
239ed62
 
 
 
 
 
ecfb95b
 
edda1c8
25bf878
b5902d0
239ed62
 
625830f
 
 
 
 
77414f0
fc967fc
 
f646433
 
6a5424e
 
f646433
 
40457bb
77414f0
 
 
 
 
40457bb
239ed62
f646433
675f93f
da3287c
40457bb
f646433
 
675f93f
f646433
 
675f93f
f646433
 
8df6565
34d8968
675f93f
40457bb
675f93f
f646433
675f93f
40457bb
 
675f93f
7218a79
40457bb
f646433
40457bb
675f93f
40457bb
 
 
 
 
675f93f
40457bb
 
675f93f
40457bb
 
 
 
 
 
675f93f
40457bb
 
 
94a832d
40457bb
 
 
 
 
5a326e4
40457bb
5a326e4
40457bb
 
675f93f
40457bb
22f8263
f646433
22f8263
f646433
 
6a5424e
 
 
 
b92ccd8
6a5424e
239ed62
40457bb
 
 
 
 
 
f646433
239ed62
ea8e426
f646433
 
 
40457bb
f646433
 
 
 
 
40457bb
f646433
 
55575a2
 
f646433
be0aa53
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import random
import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import AutoPipelineForText2Image, AutoencoderKL
from compel import Compel, ReturnedEmbeddingsType

import re

def tokenize_line(text, tokenizer):
    tokens = tokenizer.tokenize(text)
    return tokens

def parse_prompt_attention(text):
    res = []
    pattern = re.compile(r"\(([^)]+):([\d\.]+)\)")
    matches = pattern.findall(text)
    for match in matches:
        res.append((match[0], float(match[1])))
    return res

def prompt_attention_to_invoke_prompt(attention_list):
    prompt = ""
    for item in attention_list:
        prompt += f"({item[0]}:{item[1]}) "
    return prompt.strip()

def merge_embeds(prompts, compel):
    embeds = []
    pooled_embeds = []
    for prompt in prompts:
        conditioning, pooled = compel(prompt)
        embeds.append(conditioning)
        pooled_embeds.append(pooled)
    # 合并嵌入,这里使用平均值,可以根据需要调整
    merged_embed = torch.mean(torch.stack(embeds), dim=0)
    merged_pooled = torch.mean(torch.stack(pooled_embeds), dim=0)
    return merged_embed, merged_pooled

def get_embed_new(prompt, pipeline, compel, only_convert_string=False, compel_process_sd=False):
    if compel_process_sd:
        return merge_embeds(tokenize_line(prompt, pipeline.tokenizer), compel)
    else:
        # fix bug weights conversion excessive emphasis
        prompt = prompt.replace("((", "(").replace("))", ")")

    # Convert to Compel
    attention = parse_prompt_attention(prompt)
    
    # 新增处理,当 attention 为空时
    if not attention:
        if only_convert_string:
            return prompt
        else:
            conditioning, pooled = compel(prompt)
            return conditioning, pooled

    global_attention_chunks = []
    # 下面的部分保持不变
    for att in attention:
        for chunk in att[0].split(','):
            temp_prompt_chunks = tokenize_line(chunk, pipeline.tokenizer)
            for small_chunk in temp_prompt_chunks:
                temp_dict = {
                    "weight": round(att[1], 2),
                    "length": len(pipeline.tokenizer.tokenize(f'{small_chunk},')),
                    "prompt": f'{small_chunk},'
                }
                global_attention_chunks.append(temp_dict)

    max_tokens = pipeline.tokenizer.model_max_length - 2
    global_prompt_chunks = []
    current_list = []
    current_length = 0
    for item in global_attention_chunks:
        if current_length + item['length'] > max_tokens:
            global_prompt_chunks.append(current_list)
            current_list = [[item['prompt'], item['weight']]]
            current_length = item['length']
        else:
            if not current_list:
                current_list.append([item['prompt'], item['weight']])
            else:
                if item['weight'] != current_list[-1][1]:
                    current_list.append([item['prompt'], item['weight']])
                else:
                    current_list[-1][0] += f" {item['prompt']}"
            current_length += item['length']
    if current_list:
        global_prompt_chunks.append(current_list)

    if only_convert_string:
        return ' '.join([prompt_attention_to_invoke_prompt(i) for i in global_prompt_chunks])

    return merge_embeds([prompt_attention_to_invoke_prompt(i) for i in global_prompt_chunks], compel)
    
if not torch.cuda.is_available():
    DESCRIPTION += "\n<p>你现在运行在CPU上 但是此项目只支持GPU.</p>"

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 4096

if torch.cuda.is_available():
    vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
    pipe = AutoPipelineForText2Image.from_pretrained(
        "anon4ik/noobaiXLNAIXL_epsilonPred05Version_diffusers",
        vae=vae,
        torch_dtype=torch.float16,
        use_safetensors=True,
        add_watermarker=False
    )
    pipe.to("cuda")

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

@spaces.GPU
def infer(
    prompt: str,
    negative_prompt: str = "lowres, {bad}, error, fewer, extra, missing, worst quality, jpeg artifacts, bad quality, watermark, unfinished, displeasing, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]",
    use_negative_prompt: bool = True,
    seed: int = 7,
    width: int = 1024,
    height: int = 1536,
    guidance_scale: float = 3,
    num_inference_steps: int = 30,
    randomize_seed: bool = True,
    use_resolution_binning: bool = True,
    progress=gr.Progress(track_tqdm=True),
):
    seed = int(randomize_seed_fn(seed, randomize_seed))
    generator = torch.Generator().manual_seed(seed)
    # 初始化 Compel 实例
    compel_instance = Compel(
        tokenizer=[pipe.tokenizer, pipe.tokenizer_2],
        text_encoder=[pipe.text_encoder, pipe.text_encoder_2],
        returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
        requires_pooled=[False, True]
    )
    # 在 infer 函数中调用 get_embed_new
    conditioning, pooled = get_embed_new(prompt, pipe, compel_instance)
    
    # 处理反向提示(negative_prompt)
    if use_negative_prompt and negative_prompt:
        negative_conditioning, negative_pooled = get_embed_new(negative_prompt, pipe, compel_instance)
    else:
        negative_conditioning = None
        negative_pooled = None
    
    # 在调用 pipe 时,使用新的参数名称(确保参数名称正确)
    image = pipe(
        prompt_embeds=conditioning,
        pooled_prompt_embeds=pooled,
        negative_prompt_embeds=negative_conditioning,
        negative_pooled_prompt_embeds=negative_pooled,
        width=width,
        height=height,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        generator=generator,
        use_resolution_binning=use_resolution_binning,
    ).images[0]
    return image, seed

examples = [
    "nahida (genshin impact)",
    "klee (genshin impact)",
]

css = '''
.gradio-container{max-width: 560px !important}
h1{text-align:center}
footer {
    visibility: hidden
}
'''

with gr.Blocks(css=css) as demo:
    gr.Markdown("""# 梦羽的模型生成器
        ### 快速生成NoobAIXL v0.5的模型图片 V1.0模型在另一个项目上""")
    with gr.Group():
        with gr.Row():
            prompt = gr.Text(
                label="关键词",
                show_label=False,
                max_lines=1,
                placeholder="输入你要的图片关键词",
                container=False,
            )
            run_button = gr.Button("生成", scale=0, variant="primary")
        result = gr.Image(label="Result", show_label=False, format="png")
    with gr.Accordion("高级选项", open=False):
        with gr.Row():
            use_negative_prompt = gr.Checkbox(label="使用反向词条", value=True)
            negative_prompt = gr.Text(
                label="反向词条",
                max_lines=5,
                lines=4,
                placeholder="输入你要排除的图片关键词",
                value="lowres, {bad}, error, fewer, extra, missing, worst quality, jpeg artifacts, bad quality, watermark, unfinished, displeasing, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]",
                visible=True,
            )
        seed = gr.Slider(
            label="种子",
            minimum=0,
            maximum=MAX_SEED,
            step=1,
            value=0,
        )
        randomize_seed = gr.Checkbox(label="随机种子", value=True)
        with gr.Row(visible=True):
            width = gr.Slider(
                label="宽度",
                minimum=512,
                maximum=MAX_IMAGE_SIZE,
                step=64,
                value=1024,
            )
            height = gr.Slider(
                label="高度",
                minimum=512,
                maximum=MAX_IMAGE_SIZE,
                step=64,
                value=1536,
            )
        with gr.Row():
            guidance_scale = gr.Slider(
                label="Guidance Scale",
                minimum=0.1,
                maximum=10,
                step=0.1,
                value=7.0,
            )
            num_inference_steps = gr.Slider(
                label="生成步数",
                minimum=1,
                maximum=50,
                step=1,
                value=28,
            )

    gr.Examples(
        examples=examples,
        inputs=prompt,
        outputs=[result, seed],
        fn=infer
    )

    use_negative_prompt.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_negative_prompt,
        outputs=negative_prompt,
    )

    gr.on(
        triggers=[prompt.submit, run_button.click],
        fn=infer,
        inputs=[
            prompt,
            negative_prompt,
            use_negative_prompt,
            seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
            randomize_seed,
        ],
        outputs=[result, seed],
    )

if __name__ == "__main__":
    demo.launch()