Noob50 / app.py
Menyu's picture
Update app.py
ecfb95b verified
raw
history blame
9.29 kB
import random
import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import AutoPipelineForText2Image, AutoencoderKL
from compel import Compel, ReturnedEmbeddingsType
import re
def tokenize_line(text, tokenizer):
tokens = tokenizer.tokenize(text)
return tokens
def parse_prompt_attention(text):
res = []
pattern = re.compile(r"\(([^)]+):([\d\.]+)\)")
matches = pattern.findall(text)
for match in matches:
res.append((match[0], float(match[1])))
return res
def prompt_attention_to_invoke_prompt(attention_list):
prompt = ""
for item in attention_list:
prompt += f"({item[0]}:{item[1]}) "
return prompt.strip()
def merge_embeds(prompts, compel):
embeds = []
pooled_embeds = []
for prompt in prompts:
conditioning, pooled = compel(prompt)
embeds.append(conditioning)
pooled_embeds.append(pooled)
# 合并嵌入,这里使用平均值,可以根据需要调整
merged_embed = torch.mean(torch.stack(embeds), dim=0)
merged_pooled = torch.mean(torch.stack(pooled_embeds), dim=0)
return merged_embed, merged_pooled
def get_embed_new(prompt, pipeline, compel, only_convert_string=False, compel_process_sd=False):
if compel_process_sd:
return merge_embeds(tokenize_line(prompt, pipeline.tokenizer), compel)
else:
# fix bug weights conversion excessive emphasis
prompt = prompt.replace("((", "(").replace("))", ")")
# Convert to Compel
attention = parse_prompt_attention(prompt)
# 新增处理,当 attention 为空时
if not attention:
if only_convert_string:
return prompt
else:
conditioning, pooled = compel(prompt)
return conditioning, pooled
global_attention_chunks = []
# 下面的部分保持不变
for att in attention:
for chunk in att[0].split(','):
temp_prompt_chunks = tokenize_line(chunk, pipeline.tokenizer)
for small_chunk in temp_prompt_chunks:
temp_dict = {
"weight": round(att[1], 2),
"length": len(pipeline.tokenizer.tokenize(f'{small_chunk},')),
"prompt": f'{small_chunk},'
}
global_attention_chunks.append(temp_dict)
max_tokens = pipeline.tokenizer.model_max_length - 2
global_prompt_chunks = []
current_list = []
current_length = 0
for item in global_attention_chunks:
if current_length + item['length'] > max_tokens:
global_prompt_chunks.append(current_list)
current_list = [[item['prompt'], item['weight']]]
current_length = item['length']
else:
if not current_list:
current_list.append([item['prompt'], item['weight']])
else:
if item['weight'] != current_list[-1][1]:
current_list.append([item['prompt'], item['weight']])
else:
current_list[-1][0] += f" {item['prompt']}"
current_length += item['length']
if current_list:
global_prompt_chunks.append(current_list)
if only_convert_string:
return ' '.join([prompt_attention_to_invoke_prompt(i) for i in global_prompt_chunks])
return merge_embeds([prompt_attention_to_invoke_prompt(i) for i in global_prompt_chunks], compel)
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>你现在运行在CPU上 但是此项目只支持GPU.</p>"
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 4096
if torch.cuda.is_available():
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
pipe = AutoPipelineForText2Image.from_pretrained(
"anon4ik/noobaiXLNAIXL_epsilonPred05Version_diffusers",
vae=vae,
torch_dtype=torch.float16,
use_safetensors=True,
add_watermarker=False
)
pipe.to("cuda")
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
@spaces.GPU
def infer(
prompt: str,
negative_prompt: str = "lowres, {bad}, error, fewer, extra, missing, worst quality, jpeg artifacts, bad quality, watermark, unfinished, displeasing, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]",
use_negative_prompt: bool = True,
seed: int = 7,
width: int = 1024,
height: int = 1536,
guidance_scale: float = 3,
num_inference_steps: int = 30,
randomize_seed: bool = True,
use_resolution_binning: bool = True,
progress=gr.Progress(track_tqdm=True),
):
seed = int(randomize_seed_fn(seed, randomize_seed))
generator = torch.Generator().manual_seed(seed)
# 初始化 Compel 实例
compel_instance = Compel(
tokenizer=[pipe.tokenizer, pipe.tokenizer_2],
text_encoder=[pipe.text_encoder, pipe.text_encoder_2],
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
requires_pooled=[False, True]
)
# 在 infer 函数中调用 get_embed_new
conditioning, pooled = get_embed_new(prompt, pipe, compel_instance)
# 处理反向提示(negative_prompt)
if use_negative_prompt and negative_prompt:
negative_conditioning, negative_pooled = get_embed_new(negative_prompt, pipe, compel_instance)
else:
negative_conditioning = None
negative_pooled = None
# 在调用 pipe 时,使用新的参数名称(确保参数名称正确)
image = pipe(
prompt_embeds=conditioning,
pooled_prompt_embeds=pooled,
negative_prompt_embeds=negative_conditioning,
negative_pooled_prompt_embeds=negative_pooled,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
use_resolution_binning=use_resolution_binning,
).images[0]
return image, seed
examples = [
"nahida (genshin impact)",
"klee (genshin impact)",
]
css = '''
.gradio-container{max-width: 560px !important}
h1{text-align:center}
footer {
visibility: hidden
}
'''
with gr.Blocks(css=css) as demo:
gr.Markdown("""# 梦羽的模型生成器
### 快速生成NoobAIXL v0.5的模型图片 V1.0模型在另一个项目上""")
with gr.Group():
with gr.Row():
prompt = gr.Text(
label="关键词",
show_label=False,
max_lines=1,
placeholder="输入你要的图片关键词",
container=False,
)
run_button = gr.Button("生成", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False, format="png")
with gr.Accordion("高级选项", open=False):
with gr.Row():
use_negative_prompt = gr.Checkbox(label="使用反向词条", value=True)
negative_prompt = gr.Text(
label="反向词条",
max_lines=5,
lines=4,
placeholder="输入你要排除的图片关键词",
value="lowres, {bad}, error, fewer, extra, missing, worst quality, jpeg artifacts, bad quality, watermark, unfinished, displeasing, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]",
visible=True,
)
seed = gr.Slider(
label="种子",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="随机种子", value=True)
with gr.Row(visible=True):
width = gr.Slider(
label="宽度",
minimum=512,
maximum=MAX_IMAGE_SIZE,
step=64,
value=1024,
)
height = gr.Slider(
label="高度",
minimum=512,
maximum=MAX_IMAGE_SIZE,
step=64,
value=1536,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=0.1,
maximum=10,
step=0.1,
value=7.0,
)
num_inference_steps = gr.Slider(
label="生成步数",
minimum=1,
maximum=50,
step=1,
value=28,
)
gr.Examples(
examples=examples,
inputs=prompt,
outputs=[result, seed],
fn=infer
)
use_negative_prompt.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt,
outputs=negative_prompt,
)
gr.on(
triggers=[prompt.submit, run_button.click],
fn=infer,
inputs=[
prompt,
negative_prompt,
use_negative_prompt,
seed,
width,
height,
guidance_scale,
num_inference_steps,
randomize_seed,
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch()