Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import os | |
from huggingface_hub import Repository | |
from huggingface_hub import login | |
login(token = os.environ['HUB_TOKEN']) | |
repo = Repository( | |
local_dir="backend_fn", | |
repo_type="dataset", | |
clone_from=os.environ['DATASET'], | |
token=True, | |
git_email='[email protected]' | |
) | |
repo.git_pull() | |
import json | |
import uuid | |
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
from threading import Thread | |
from backend_fn.feedback import feedback | |
from gradio_modal import Modal | |
""" | |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
""" | |
model_name = "Merdeka-LLM/merdeka-llm-3.2b-128k-instruct" | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
torch_dtype="auto", | |
device_map="auto" | |
) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
streamer = TextIteratorStreamer(tokenizer, timeout=300, skip_prompt=True, skip_special_tokens=True) | |
histories = [] | |
action = None | |
session_id = uuid.uuid1().__str__() | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
# system_message, | |
max_tokens = 4096, | |
temperature = 0.01, | |
top_p = 0.95, | |
): | |
messages = [ | |
{"role": "system", "content": "You are a professional lawyer who is familiar with Malaysia Law."} | |
] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
text = tokenizer.apply_chat_template( | |
messages, | |
tokenize=False, | |
add_generation_prompt=True, | |
) | |
model_inputs = tokenizer([text], return_tensors="pt").to(model.device) | |
generate_kwargs = dict( | |
model_inputs, | |
max_new_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
streamer=streamer | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
for new_token in streamer: | |
if new_token != '<': | |
response += new_token | |
yield response | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
""" | |
def submit_feedback(value): | |
feedback(session_id, json.dumps(histories), value, action) | |
with gr.Blocks() as demo: | |
def vote(history,data: gr.LikeData): | |
global histories | |
global action | |
histories = history | |
action = data.liked | |
with Modal(visible=False) as modal: | |
textb = gr.Textbox( | |
label='Actual response', | |
info='Leave blank if the answer is good enough' | |
) | |
submit_btn = gr.Button( | |
'Submit' | |
) | |
submit_btn.click(submit_feedback,textb) | |
submit_btn.click(lambda: Modal(visible=False), None, modal) | |
submit_btn.click(lambda x: gr.update(value=''), [],[textb]) | |
ci = gr.ChatInterface( | |
respond, | |
# fill_height=True | |
# additional_inputs=[ | |
# # gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
# gr.Slider(minimum=0.1, maximum=4.0, value=0.1, step=0.1, label="Temperature"), | |
# gr.Slider( | |
# minimum=0.1, | |
# maximum=1.0, | |
# value=0.95, | |
# step=0.05, | |
# label="Top-p (nucleus sampling)", | |
# ), | |
# ], | |
) | |
ci.chatbot.show_copy_button=True | |
# ci.chatbot.value=[(None,"Hello! I'm here to assist you with understanding the laws and acts of Malaysia.")] | |
# ci.chatbot.height=500 | |
ci.chatbot.like(vote, ci.chatbot, None).then( | |
lambda: Modal(visible=True), None, modal | |
) | |
if __name__ == "__main__": | |
demo.launch( | |
) | |