File size: 36,906 Bytes
041789a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b0b83d
 
 
041789a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a195ff7
 
 
 
 
 
041789a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2524578
041789a
2524578
 
32f33a9
 
 
041789a
2524578
041789a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a195ff7
041789a
a195ff7
 
 
 
 
041789a
a195ff7
 
041789a
 
22936c7
a195ff7
041789a
a195ff7
041789a
a195ff7
 
 
 
 
041789a
a195ff7
041789a
a195ff7
 
 
041789a
a195ff7
 
 
041789a
a195ff7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
041789a
a195ff7
 
041789a
a195ff7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
041789a
 
 
a195ff7
041789a
 
 
 
 
 
 
 
a195ff7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
041789a
a195ff7
 
 
 
 
 
 
041789a
a195ff7
 
041789a
 
01c8010
af4c2d4
01c8010
041789a
 
 
 
 
 
 
 
 
01c8010
041789a
01c8010
041789a
 
 
 
47f5552
 
041789a
 
 
 
 
 
 
af4c2d4
041789a
 
af4c2d4
041789a
 
 
 
 
 
 
01c8010
78321c3
01c8010
 
78321c3
af4c2d4
486f4c0
 
 
 
 
32f33a9
041789a
 
 
 
 
 
 
 
 
 
af4c2d4
041789a
 
 
 
 
 
01c8010
 
af4c2d4
 
01c8010
af4c2d4
01c8010
af4c2d4
 
 
 
 
01c8010
 
 
673e28d
01c8010
 
 
041789a
01c8010
 
 
 
 
 
 
 
d621a34
01c8010
041789a
01c8010
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858

# Import necessary libraries
import os  # Interacting with the operating system (reading/writing files)
import chromadb  # High-performance vector database for storing/querying dense vectors
from dotenv import load_dotenv  # Loading environment variables from a .env file
import json  # Parsing and handling JSON data

# LangChain imports
from langchain_core.documents import Document  # Document data structures
from langchain_core.runnables import RunnablePassthrough  # LangChain core library for running pipelines
from langchain_core.output_parsers import StrOutputParser  # String output parser
from langchain.prompts import ChatPromptTemplate  # Template for chat prompts
from langchain.chains.query_constructor.base import AttributeInfo  # Base classes for query construction
from langchain.retrievers.self_query.base import SelfQueryRetriever  # Base classes for self-querying retrievers
from langchain.retrievers.document_compressors import LLMChainExtractor, CrossEncoderReranker  # Document compressors
from langchain.retrievers import ContextualCompressionRetriever  # Contextual compression retrievers

# LangChain community & experimental imports
from langchain_community.vectorstores import Chroma  # Implementations of vector stores like Chroma
from langchain_community.document_loaders import PyPDFDirectoryLoader, PyPDFLoader  # Document loaders for PDFs
from langchain_community.cross_encoders import HuggingFaceCrossEncoder  # Cross-encoders from HuggingFace
from langchain_experimental.text_splitter import SemanticChunker  # Experimental text splitting methods
from langchain.text_splitter import (
    CharacterTextSplitter,  # Splitting text by characters
    RecursiveCharacterTextSplitter  # Recursive splitting of text by characters
)
from langchain_core.tools import tool
from langchain.agents import create_tool_calling_agent, AgentExecutor
from langchain_core.prompts import ChatPromptTemplate

# LangChain OpenAI imports
# from langchain_openai import AzureOpenAIEmbeddings, AzureChatOpenAI  # OpenAI embeddings and models
from langchain_openai import OpenAIEmbeddings  # OpenAI embeddings for text vectors
from langchain_openai import ChatOpenAI

# LlamaParse & LlamaIndex imports
from llama_parse import LlamaParse  # Document parsing library
from llama_index.core import Settings, SimpleDirectoryReader  # Core functionalities of the LlamaIndex

# LangGraph import
from langgraph.graph import StateGraph, END, START  # State graph for managing states in LangChain

# Pydantic import
from pydantic import BaseModel  # Pydantic for data validation

# Typing imports
from typing import Dict, List, Tuple, Any, TypedDict  # Python typing for function annotations

# Other utilities
import numpy as np  # Numpy for numerical operations
from groq import Groq
from mem0 import MemoryClient
import streamlit as st
from datetime import datetime

import traceback
import time
import random
from datetime import datetime
from typing import Dict, List

#====================================SETUP=====================================#
# Fetch secrets from Hugging Face Spaces
api_key = os.environ['api_key']
endpoint = os.environ['OPENAI_API_BASE']
# api_version = os.environ['AZURE_OPENAI_APIVERSION']
model_name = os.environ['CHATGPT_MODEL']
emb_key = os.environ['EMB_MODEL_KEY']
emb_endpoint = os.environ['EMB_DEPLOYMENT']
llama_api_key = os.environ['LLAMA_GUARD_API_KEY']
mem0_api_key = os.environ['mem0_api_key']

# Initialize the OpenAI embedding function for Chroma
embedding_function = chromadb.utils.embedding_functions.OpenAIEmbeddingFunction(
    api_base=endpoint, 
    api_key=api_key, 
    model_name='text-embedding-ada-002' # This is a fixed value and does not need modification
)
# This initializes the OpenAI embedding function for the Chroma vectorstore, using the provided Azure endpoint and API key.

# Initialize the Azure OpenAI Embeddings
embedding_model = OpenAIEmbeddings(
    openai_api_base=endpoint,
    openai_api_key=api_key, 
    model='text-embedding-ada-002'
)
# This initializes the Azure OpenAI embeddings model using the specified endpoint, API key, and model name.

# Initialize the Chat OpenAI model
llm = ChatOpenAI(
    openai_api_base=endpoint, # Complete the code to define the endpoint
    openai_api_key=api_key, # Complete the code to provide the API key
    model="gpt-4o-mini", # Complete the code to define the deployment name
    temperature=0.5, # Complete the code to set the temperature for the model
    streaming=False # Turn off streaming
)

# set the LLM and embedding model in the LlamaIndex settings.
Settings.llm = llm # Complete the code to define the LLM model
Settings.embedding = embedding_model # Complete the code to define the embedding model
#================================Creating Langgraph agent======================#

class AgentState(TypedDict):
    query: str  # The current user query
    expanded_query: str  # The expanded version of the user query
    context: List[Dict[str, Any]]  # Retrieved documents (content and metadata)
    response: str  # The generated response to the user query
    precision_score: float  # The precision score of the response
    groundedness_score: float  # The groundedness score of the response
    groundedness_loop_count: int  # Counter for groundedness refinement loops
    precision_loop_count: int  # Counter for precision refinement loops
    feedback: str
    query_feedback: str
    groundedness_check: bool
    loop_max_iter: int

def expand_query(state):
    print("State at the start of expand_query:", state)
    """
    Expands the user query to improve retrieval of nutrition disorder-related information.

    Args:
        state (Dict): The current state of the workflow, containing the user query.

    Returns:
        Dict: The updated state with the expanded query.
    """
    print("---------Expanding Query---------")
    system_message = '''You are a helpful research assistant that is well versed in Nutritional Disorders.
        Return an expanded user query based on the user's input query. The expanded query should be designed to improve retrieval of the most relevant information. 
        Use the feedback if provided to craft the expanded query.
    '''

    expand_prompt = ChatPromptTemplate.from_messages([
        ("system", system_message),
        ("user", "Expand this query: {query} using the feedback: {query_feedback}")

    ])

    chain = expand_prompt | llm | StrOutputParser()
    expanded_query = chain.invoke({"query": state['query'], "query_feedback":state["query_feedback"]})
    print("expanded_query", expanded_query)
    state["expanded_query"] = expanded_query
    return state


# Initialize the Chroma vector store for retrieving documents
vector_store = Chroma(
    collection_name="nutritional_hypotheticals",
    persist_directory="./nutritional_db",
    embedding_function=embedding_model

)

# Create a retriever from the vector store
retriever = vector_store.as_retriever(
    search_type='similarity',
    search_kwargs={'k': 3}
)

def retrieve_context(state):
    print("State at the start of retrieve_context:", state)

    """
    Retrieves context from the vector store using the expanded or original query.

    Args:
        state (Dict): The current state of the workflow, containing the query and expanded query.

    Returns:
        Dict: The updated state with the retrieved context.
    """
    query = state['expanded_query']
    print("Query used for retrieval:", query)  # Debugging: Print the query

    # Retrieve documents from the vector store
    docs = retriever.invoke(query)
    print("Retrieved documents:", docs)  # Debugging: Print the raw docs object

    # Extract both page_content and metadata from each document
    state['context'] = [
        {
            "content": doc.page_content,  # The actual content of the document
            "metadata": doc.metadata  # The metadata (e.g., source, page number, etc.)
        }
        for doc in docs
    ]

    print("Extracted context with metadata:", state['context'])  # Debugging: Print the extracted context
    return state



def craft_response(state: Dict) -> Dict:
    print("State at the start of craft_response:", state)
    """
    Generates a response using the retrieved context, focusing on nutrition disorders.

    Args:
        state (Dict): The current state of the workflow, containing the query and retrieved context.

    Returns:
        Dict: The updated state with the generated response.
    """
    print("---------craft_response---------")
    system_message = '''You are an expert at condensing information. Your task is to extract relevant information for a given query and provide a grounded and highly precise response.'''

    response_prompt = ChatPromptTemplate.from_messages([
        ("system", system_message),
        ("user", "Query: {query}\nContext: {context}\n\nfeedback: {feedback}")
    ])

    chain = response_prompt | llm
    response = chain.invoke({
        "query": state['query'],
        "context": "\n".join([doc["content"] for doc in state['context']]),
        "feedback": state["feedback"] if state["feedback"] else "No feedback provided."  # Add feedback to the prompt # add feedback to the prompt
    })
    state['response'] = response
    print("intermediate response: ", response)

    return state


def score_groundedness(state: Dict) -> Dict:
    print("State at the start of score_groundedness:", state)
    """
    Checks whether the response is grounded in the retrieved context.

    Args:
        state (Dict): The current state of the workflow, containing the response and context.

    Returns:
        Dict: The updated state with the groundedness score.
    """
    print("---------check_groundedness---------")
    
    # System message to guide the evaluation
    system_message = '''You are a groundedness evaluator. Your task is to assess how well the given response aligns with the provided context. 
    - A grounded response is one that is accurate, directly supported by the context, and avoids speculation.
    - A response should not include information that cannot be verified or inferred from the context.

    Instructions:
    - Assign a score between 0.0 and 1.0, where:
        - 1.0: Fully grounded (entirely supported by the context).
        - 0.5: Partially grounded (some elements are supported, but others are speculative).
        - 0.0: Not grounded (contains speculative or unsupported information).
    - Provide only the numerical groundedness score as the output.'''

    # Define the prompt template for evaluating groundedness
    groundedness_prompt = ChatPromptTemplate.from_messages([
        ("system", system_message),
        ("user", "Context: {context}\nResponse: {response}\n\nGroundedness score:")
    ])

    # Chain to compute groundedness score
    chain = groundedness_prompt | llm | StrOutputParser()
    groundedness_score = float(chain.invoke({
        "context": "\n".join([doc["content"] for doc in state['context']]),  # Combine document content
        "response": state['response']  # Use the response from the state
    }))

    print("groundedness_score: ", groundedness_score)
    state['groundedness_loop_count'] += 1
    print("######### Groundedness Loop Count Incremented ###########")
    state['groundedness_score'] = groundedness_score
    print("groundedness_score: ", state['groundedness_score'])

    return state


def check_precision(state: Dict) -> Dict:

    print("State at the start of check_precision:", state)
    """
    Checks whether the response precisely addresses the user’s query.

    Args:
        state (Dict): The current state of the workflow, containing the query and response.

    Returns:
        Dict: The updated state with the precision score.
    """
    print("---------check_precision---------")

    # System message for evaluating precision
    system_message = '''You are a precision evaluator. Your task is to assess how well the given response directly and fully addresses the user's query.
    
    Instructions:
    - A precise response is one that:
        - Directly answers the user’s query without unnecessary or unrelated information.
        - Fully addresses all aspects of the query.
        - Avoids vague or overly general statements.
    - Assign a precision score between 0.0 and 1.0:
        - 1.0: Fully precise (direct, complete, and relevant to the query).
        - 0.5: Partially precise (addresses the query but is incomplete or includes some irrelevant information).
        - 0.0: Not precise (fails to address the query or contains mostly irrelevant information).
    - Provide only the numerical precision score as the output.'''

    # Define the prompt template for evaluating precision
    precision_prompt = ChatPromptTemplate.from_messages([
        ("system", system_message),
        ("user", "Query: {query}\nResponse: {response}\n\nPrecision score:")
    ])

    # Chain to compute precision score
    chain = precision_prompt | llm | StrOutputParser()
    precision_score = float(chain.invoke({
        "query": state['query'],
        "response": state['response']
    }))
    
    # Update the state with precision score
    state['precision_score'] = precision_score
    print("precision_score:", precision_score)
    state['precision_loop_count'] += 1
    print("#########Precision Incremented###########")
    return state

def refine_response(state: Dict) -> Dict:
    print("State at the start of refine_response:", state)

    """
    Suggests improvements for the generated response.

    Args:
        state (Dict): The current state of the workflow, containing the query and response.

    Returns:
        Dict: The updated state with response refinement suggestions.
    """
    print("---------refine_response---------")

    system_message = '''You are a constructive feedback evaluator. Your task is to analyze the provided response and identify potential gaps, ambiguities, or missing details. Your feedback should help improve the response for accuracy, clarity, and completeness.

Instructions:
- Do not rewrite the response.
- Focus on identifying the following:
    - Are there any gaps in the information provided?
    - Is the response ambiguous or unclear in any part?
    - Are there any details missing that are relevant to fully addressing the context or query?
- Provide actionable and constructive suggestions for improvement.
- Avoid criticism without offering specific recommendations.

Your output should be written as a list of feedback points, with each suggestion clearly and concisely stated.'''

    refine_response_prompt = ChatPromptTemplate.from_messages([
        ("system", system_message),
        ("user", "Query: {query}\nResponse: {response}\n\n"
                 "What improvements can be made to enhance accuracy and completeness?")
    ])

    chain = refine_response_prompt | llm | StrOutputParser()

    # Store response suggestions in a structured format
    feedback = f"Previous Response: {state['response']}\nSuggestions: {chain.invoke({'query': state['query'], 'response': state['response']})}"
    print("feedback: ", feedback)
    print(f"State: {state}")
    state['feedback'] = feedback
    return state

def refine_query(state: Dict) -> Dict:
    print("State at the start of refine_query:", state)
    """
    Suggests improvements for the expanded query.

    Args:
        state (Dict): The current state of the workflow, containing the query and expanded query.

    Returns:
        Dict: The updated state with query refinement suggestions.
    """
    print("---------refine_query---------")
    
    system_message = '''You are a query refinement assistant. Your task is to analyze the original query and its expanded version to suggest specific improvements that can enhance search precision and relevance.

Instructions:
- Do not replace or rewrite the expanded query. Instead, provide structured suggestions for improvement.
- Focus on identifying:
    - Missing details or specific keywords that could make the query more precise.
    - Scope refinements to narrow or broaden the query if needed.
    - Ambiguities or redundancies that can be clarified or removed.
- Ensure your suggestions are actionable and presented in a clear, concise, and structured format.
- Avoid general or vague feedback; provide specific recommendations.

Your output should be a list of suggestions that can improve the expanded query without modifying it directly.'''

    refine_query_prompt = ChatPromptTemplate.from_messages([
        ("system", system_message),
        ("user", "Original Query: {query}\nExpanded Query: {expanded_query}\n\n"
                 "What improvements can be made for a better search?")
    ])

    chain = refine_query_prompt | llm | StrOutputParser()

    # Store refinement suggestions without modifying the original expanded query
    query_feedback = f"Previous Expanded Query: {state['expanded_query']}\nSuggestions: {chain.invoke({'query': state['query'], 'expanded_query': state['expanded_query']})}"
    print("query_feedback: ", query_feedback)
    print(f"Groundedness loop count: {state['groundedness_loop_count']}")
    state['query_feedback'] = query_feedback
    return state


def should_continue_groundedness(state):
    print("State at the start of should_continue_groundedness:", state)
    """Decides if groundedness is sufficient or needs improvement."""
    print("---------should_continue_groundedness---------")
    print("groundedness loop count: ", state['groundedness_loop_count'])

    # Check if groundedness score meets the required threshold
    if state['groundedness_score'] >= 0.8:  # Threshold for groundedness
        print("Moving to precision")
        return "check_precision"  # Proceed to precision checking
    else:
        # Check if the maximum number of iterations has been reached
        if state['groundedness_loop_count'] >= state['loop_max_iter']:
            return "max_iterations_reached"  # Stop refinement if max iterations reached
        else:
            print(f"---------Groundedness Score Threshold Not Met. Refining Response-----------")
            return "refine_response"  # Continue refining the response

def should_continue_precision(state: Dict) -> str:
    print("State at the start of should_continue_precision:", state)
    
    """Decides if precision is sufficient or needs improvement."""
    print("---------should_continue_precision---------")
    print("precision loop count: ", state['precision_loop_count'])

    # Check if the precision score meets the required threshold
    if state['precision_score'] >= 0.8:  # Threshold for precision
        return "pass"  # Complete the workflow
    else:
        # Check if the maximum number of iterations has been reached
        if state['precision_loop_count'] >= state['loop_max_iter']:  # Maximum allowed loops
            return "max_iterations_reached"
        else:
            print(f"---------Precision Score Threshold Not Met. Refining Query-----------")  # Debugging
            return "refine_query"  # Refine the query


def max_iterations_reached(state: Dict) -> Dict:
    """Handles the case when the maximum number of iterations is reached."""
    print("---------max_iterations_reached---------")
    """Handles the case when the maximum number of iterations is reached."""
    response = "I'm unable to refine the response further. Please provide more context or clarify your question."
    state['response'] = response
    return state



from langgraph.graph import END, StateGraph, START

from langgraph.graph import StateGraph, START, END
from typing import Callable


def create_workflow() -> StateGraph:
    """Creates the updated workflow for the AI nutrition agent."""
    # Initialize workflow with the `AgentState` schema
    workflow = StateGraph(state_schema=AgentState)

    # Add processing nodes
    workflow.add_node("expand_query", expand_query)             # Step 1: Expand the user query
    workflow.add_node("retrieve_context", retrieve_context)     # Step 2: Retrieve relevant documents
    workflow.add_node("craft_response", craft_response)         # Step 3: Generate a response based on retrieved data
    workflow.add_node("score_groundedness", score_groundedness) # Step 4: Evaluate response grounding
    workflow.add_node("refine_response", refine_response)       # Step 5: Improve response if it's weakly grounded
    workflow.add_node("check_precision", check_precision)       # Step 6: Evaluate response precision
    workflow.add_node("refine_query", refine_query)             # Step 7: Improve query if response lacks precision
    workflow.add_node("max_iterations_reached", max_iterations_reached)  # Step 8: Handle max iterations gracefully

    # Main flow edges
    workflow.add_edge(START, "expand_query")                    # Start with expanding the query
    workflow.add_edge("expand_query", "retrieve_context")       # After expansion, retrieve context/documents
    workflow.add_edge("retrieve_context", "craft_response")     # Generate a response based on retrieved context
    workflow.add_edge("craft_response", "score_groundedness")   # Evaluate the response for groundedness

    # Conditional edges based on groundedness check
    workflow.add_conditional_edges(
        "score_groundedness",
        should_continue_groundedness,  # Use the conditional function
        {
            "check_precision": "check_precision",              # If well-grounded, proceed to precision check
            "refine_response": "refine_response",              # If not, refine the response
            "max_iterations_reached": "max_iterations_reached" # If max loops reached, exit
        }
    )

    workflow.add_edge("refine_response", "craft_response")      # Refined responses are reprocessed by crafting a new response

    # Conditional edges based on precision check
    workflow.add_conditional_edges(
        "check_precision",
        should_continue_precision,  # Use the conditional function
        {
            "pass": END,                                    # If precise, complete the workflow
            "refine_query": "refine_query",                 # If imprecise, refine the query
            "max_iterations_reached": "max_iterations_reached" # If max loops reached, exit
        }
    )

    workflow.add_edge("refine_query", "expand_query")           # Refined queries go through expansion again
    workflow.add_edge("max_iterations_reached", END)           # Max iterations lead to an exit point

    return workflow



#=========================== Defining the agentic rag tool ====================#
WORKFLOW_APP = create_workflow().compile()

# Define the tool
@tool
def agentic_rag(query: str):
    """
    Runs the RAG-based agent with conversation history for context-aware responses.

    Args:
        query (str): The current user query.

    Returns:
        Dict[str, Any]: The updated state with the generated response and conversation history.
    """
    # Initialize state with necessary parameters
    inputs = {
        "query": query,  # Current user query
        "expanded_query": "",  # Complete the code to define the expanded version of the query
        "context": [],  # Retrieved documents (initially empty)
        "response": "",  # Complete the code to define the AI-generated response
        "precision_score": 0.0,  # Complete the code to define the precision score of the response
        "groundedness_score": 0.0,  # Complete the code to define the groundedness score of the response
        "groundedness_loop_count": 0,  # Complete the code to define the counter for groundedness loops
        "precision_loop_count": 0,  # Complete the code to define the counter for precision loops
        "feedback": "",  # Complete the code to define the feedback
        "query_feedback": "",  # Complete the code to define the query feedback
        "loop_max_iter": 3  # Complete the code to define the maximum number of iterations for loops
    }

    output = WORKFLOW_APP.invoke(inputs)

    return output

#================================ Guardrails ===========================#
llama_guard_client = Groq(api_key=llama_api_key)
# Function to filter user input with Llama Guard
def filter_input_with_llama_guard(user_input, model="llama-guard-3-8b"):
    """
    Filters user input using Llama Guard to ensure it is safe.

    Parameters:
    - user_input: The input provided by the user.
    - model: The Llama Guard model to be used for filtering (default is "llama-guard-3-8b").

    Returns:
    - The filtered and safe input.
    """
    try:
        # Create a request to Llama Guard to filter the user input
        response = llama_guard_client.chat.completions.create(
            messages=[{"role": "user", "content": user_input}],
            model=model,
        )
        # Return the filtered input
        return response.choices[0].message.content.strip()
    except Exception as e:
        print(f"Error with Llama Guard: {e}")
        return None


#============================= Adding Memory to the agent using mem0 ===============================#

class NutritionBot:
    def __init__(self, api_key: str, api_base: str):
        """
        Initialize the NutritionBot class, setting up memory and the LLM client.

        Args:
            api_key (str): The OpenAI API key for authenticating requests.
            api_base (str): The custom OpenAI API base endpoint.
        """
        print(f"Initializing NutritionBot with OpenAI API key: {api_key}")
        print(f"Using custom OpenAI API base: {api_base}")

        # Initialize a memory client to store and retrieve customer interactions
        self.memory = MemoryClient(api_key=os.getenv("mem0_api_key"))  # Fixed the userdata reference
        print("Memory client initialized.")

        # Initialize the OpenAI client using the provided credentials, custom API base, and model
        self.client = ChatOpenAI(
            model_name="gpt-4o-mini",  # Correct model name
            api_key=api_key,
            openai_api_base=api_base,
            temperature=0.7,  # Controls randomness in responses
            verbose=True  # Enable verbose logging for debugging
        )
        print("OpenAI client initialized with custom API base and model gpt-4o-mini.")

    def get_relevant_history(self, user_id: str, query: str) -> List[Dict]:
        """
        Retrieve past interactions relevant to the current query.

        Args:
            user_id (str): Unique identifier for the customer.
            query (str): The customer's current query.

        Returns:
            List[Dict]: A list of relevant past interactions.
        """
        print("Entering get_relevant_history function...")
        try:
            history = self.memory.search(
                query=query,
                user_id=user_id,
                limit=3
            )
            print("Relevant history retrieved:", history)
            return history
        except Exception as e:
            print(f"Error retrieving history: {e}")
            traceback.print_exc()
            return []

    def query_model(self, prompt: str) -> str:
        """
        Query the OpenAI model directly using the prompt.

        Args:
            prompt (str): The input prompt for the model.

        Returns:
            str: The assistant's response.
        """
        print("Querying the OpenAI model...")
        try:
            # Use the correct input format for ChatOpenAI
            messages = [
                {"role": "system", "content": "You are a helpful assistant."},
                {"role": "user", "content": prompt}
            ]
            response = self.client.invoke(messages)  # Use the `invoke()` method
            print("Raw response from OpenAI API:", response)

            # Since the response is an AIMessage object, extract the content directly
            content = response.content  # Access the `content` property of the AIMessage
            print("Extracted response content:", content)
            return content
        except Exception as e:
            print(f"Error querying the model: {e}")
            traceback.print_exc()
            return "I'm sorry, I couldn't process your request. Please try again later."

    def handle_customer_query(self, user_id: str, query: str) -> str:
        """
        Process a customer's query and provide a response, incorporating past interactions for context.

        Args:
            user_id (str): Unique identifier for the customer.
            query (str): Customer's query.

        Returns:
            str: Chatbot's response.
        """
        print("Entering handle_customer_query function...")

        # Retrieve relevant history for the user
        relevant_history = self.get_relevant_history(user_id, query)

        # Build context from past interactions
        context = "Previous relevant interactions:\n"
        for memory in relevant_history:
            context += f"Customer: {memory['query']}\n"
            context += f"Support: {memory['response']}\n---\n"

        # Create the prompt
        prompt = f"""
        Context:
        {context}

        Current customer query: {query}

        Provide a helpful response that takes into account any relevant past interactions.
        """
        print("Final prompt being sent to the model:")
        print(prompt)

        # Retry logic with exponential backoff
        max_retries = 3
        for attempt in range(max_retries):
            try:
                print(f"Querying model (attempt {attempt + 1})...")
                response_content = self.query_model(prompt)
                if not response_content:
                    raise ValueError("Model returned an empty response.")

                # Store the interaction
                self.store_customer_interaction(
                    user_id=user_id,
                    message=query,
                    response=response_content,
                    metadata={"type": "support_query"}
                )
                return response_content

            except Exception as e:
                print(f"Error querying the model (attempt {attempt + 1}): {e}")
                traceback.print_exc()
                if attempt < max_retries - 1:
                    wait_time = (2 ** attempt) + random.uniform(0, 1)  # Exponential backoff with jitter
                    print(f"Retrying in {wait_time:.2f} seconds...")
                    time.sleep(wait_time)
                else:
                    return "I'm sorry, I couldn't process your request. Please try again later."

    def store_customer_interaction(self, user_id: str, message: str, response: str, metadata: Dict = None):
        """
        Store customer interaction in memory for future reference.

        Args:
            user_id (str): Unique identifier for the customer.
            message (str): Customer's query or message.
            response (str): Chatbot's response.
            metadata (Dict, optional): Additional metadata for the interaction.
        """
        print("Entering store_customer_interaction function...")

        if metadata is None:
            metadata = {}

        # Add timestamp to metadata
        metadata["timestamp"] = datetime.now().isoformat()

        # Format the interaction for storage
        conversation = [
            {"role": "user", "content": message},
            {"role": "assistant", "content": response}
        ]

        try:
            self.memory.add(
                conversation,
                user_id=user_id,
                output_format="v1.1",
                metadata=metadata
            )
            print("Interaction stored successfully.")
        except Exception as e:
            print(f"Error storing interaction: {e}")
            traceback.print_exc()

#=====================User Interface using streamlit ===========================#
import streamlit as st
import os

def nutrition_disorder_streamlit():
    """
    A Streamlit-based UI for the Nutrition Disorder Specialist Agent.
    """
    st.title("Nutrition Disorder Specialist")
    st.write("Ask me anything about nutrition disorders, symptoms, causes, treatments, and more.")
    st.write("Type 'exit' to end the conversation.")

    # Initialize session state for chat history and user_id if they don't exist
    if "chat_history" not in st.session_state:
        st.session_state.chat_history = []
    if "user_id" not in st.session_state:
        st.session_state.user_id = None

    # Login form: Only if user is not logged in
    if st.session_state.user_id is None:
        with st.form(key="login_form", clear_on_submit=True):
            user_id = st.text_input("Please enter your name to begin:")
            submit_button = st.form_submit_button("Login")
            if submit_button and user_id:
                st.session_state.user_id = user_id
                st.session_state.chat_history.append({
                    "role": "assistant",
                    "content": f"Welcome, {user_id}! How can I help you with nutrition disorders today?"
                })
                st.session_state.login_submitted = True
        if st.session_state.get("login_submitted", False):
            st.session_state.pop("login_submitted")
            st.rerun()
    else:
        # Display chat history
        for message in st.session_state.chat_history:
            with st.chat_message(message["role"]):
                st.write(message["content"])

        # Chat input with custom placeholder text
        user_query = st.chat_input("Type your question here (or 'exit' to end): ")

        if user_query is not None:
            user_query = user_query.strip()
        else:
            user_query = ""

        # for debug purposes, echo the user query               
        debug_msg = user_query
        with st.chat_message("assistant"):
            st.write(debug_msg)                      

        if user_query:
            if user_query.lower() == "exit":
                st.session_state.chat_history.append({"role": "user", "content": "exit"})
                with st.chat_message("user"):
                    st.write("exit")
                goodbye_msg = "Goodbye! Feel free to return if you have more questions about nutrition disorders."
                st.session_state.chat_history.append({"role": "assistant", "content": goodbye_msg})
                with st.chat_message("assistant"):
                    st.write(goodbye_msg)
                st.session_state.user_id = None
                st.rerun()
                return

            st.session_state.chat_history.append({"role": "user", "content": user_query})
            with st.chat_message("user"):
                st.write(user_query)

            # Input filtering with Llama Guard
            try:
                filtered_result = filter_input_with_llama_guard(user_query)  # Replace with the actual function
                filtered_result = filtered_result.replace("\n", " ")

                if filtered_result in ["safe", "unsafe S7", "unsafe S6"]:
                    if "chatbot" not in st.session_state:
                        # Pass the API key and base to the chatbot initialization
                        st.session_state.chatbot = NutritionBot(
                            api_key=os.getenv("OPENAI_API_KEY"),
                            api_base=os.getenv("OPENAI_API_BASE")
                        )

                    # Handle the query
                    response = st.session_state.chatbot.handle_customer_query(
                        st.session_state.user_id, user_query  # Use st.session_state.user_id here
                    )
                    with st.chat_message("assistant"):
                        st.write(response)
                    st.session_state.chat_history.append({"role": "assistant", "content": response})

                else:
                    inappropriate_msg = "I apologize, but I cannot process that input as it may be inappropriate. Please try again."
                    with st.chat_message("assistant"):
                        st.write(inappropriate_msg)
                    st.session_state.chat_history.append({"role": "assistant", "content": inappropriate_msg})

            except Exception as e:
                error_msg = f"Oops, sorry, I encountered an error while processing your query. Please try again. Error: {str(e)}"
                with st.chat_message("assistant"):
                    st.write(error_msg)
                st.session_state.chat_history.append({"role": "assistant", "content": error_msg})

        else:
            with st.chat_message("assistant"):
                st.write("Please type something to ask a question!")

if __name__ == "__main__":
    nutrition_disorder_streamlit()