Spaces:
Running
Running
File size: 12,901 Bytes
688106d e926635 688106d d96df3e 688106d e926635 d96df3e 688106d d3b42d5 688106d d96df3e 295c6bd e926635 d96df3e 688106d d96df3e 688106d 6f3a331 688106d 6f3a331 b364345 d96df3e 688106d 295c6bd 688106d 6f3a331 688106d 6f3a331 688106d 6f3a331 688106d 6f3a331 688106d 6f3a331 688106d 6f3a331 688106d 6f3a331 688106d 6f3a331 688106d 6f3a331 688106d 6f3a331 688106d 6f3a331 688106d 6f3a331 688106d 6f3a331 688106d 6f3a331 688106d 6f3a331 688106d 6f3a331 688106d 6f3a331 688106d 6f3a331 688106d 6f3a331 688106d 6f3a331 688106d 6f3a331 688106d 382662a 688106d b364345 688106d b364345 688106d d3b42d5 688106d 483a583 688106d 483a583 688106d 6f3a331 688106d 6f3a331 688106d 6f3a331 688106d 6f3a331 688106d 6f3a331 688106d d3b42d5 688106d a369299 688106d 6f3a331 688106d 6f3a331 688106d 6f3a331 688106d b364345 688106d 6e5f7ce 6f3a331 c3d54db 6f3a331 6e5f7ce 9c27796 688106d 6f3a331 6e5f7ce 688106d 6f3a331 688106d c3d54db 688106d b364345 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 |
# Define allowed operators
plus(x::Float32, y::Float32) = x+y
mult(x::Float32, y::Float32) = x*y;
##########################
# # Allowed operators
# (Apparently using const for globals helps speed)
const binops = [plus, mult]
const unaops = [sin, cos, exp]
##########################
# How many equations to search when replacing
const ns=10;
# Here is the function we want to learn (x2^2 + cos(x3) + 5)
#
##########################
# # Dataset to learn
const X = convert(Array{Float32, 2}, randn(100, 5)*2)
const y = convert(Array{Float32, 1}, ((cx,)->cx^2).(X[:, 2]) + cos.(X[:, 3]))
##########################
##################
# Hyperparameters
# How much to punish complexity
const parsimony = 1f-3
# How much to scale temperature by (T between 0 and 1)
const alpha = 10.0f0
const maxsize = 20
##################
id = (x,) -> x
const nuna = size(unaops)[1]
const nbin = size(binops)[1]
const nops = nuna + nbin
const nvar = size(X)[2];
# Define a serialization format for the symbolic equations:
mutable struct Node
#Holds operators, variables, constants in a tree
degree::Integer #0 for constant/variable, 1 for cos/sin, 2 for +/* etc.
val::Union{Float32, Integer} #Either const value, or enumerates variable
constant::Bool #false if variable
op::Function #enumerates operator (for degree=1,2)
l::Union{Node, Nothing}
r::Union{Node, Nothing}
Node(val::Float32) = new(0, val, true, id, nothing, nothing)
Node(val::Integer) = new(0, val, false, id, nothing, nothing)
Node(op, l::Node) = new(1, 0.0f0, false, op, l, nothing)
Node(op, l::Union{Float32, Integer}) = new(1, 0.0f0, false, op, Node(l), nothing)
Node(op, l::Node, r::Node) = new(2, 0.0f0, false, op, l, r)
#Allow to pass the leaf value without additional node call:
Node(op, l::Union{Float32, Integer}, r::Node) = new(2, 0.0f0, false, op, Node(l), r)
Node(op, l::Node, r::Union{Float32, Integer}) = new(2, 0.0f0, false, op, l, Node(r))
Node(op, l::Union{Float32, Integer}, r::Union{Float32, Integer}) = new(2, 0.0f0, false, op, Node(l), Node(r))
end
# Evaluate a symbolic equation:
function evalTree(tree::Node, x::Array{Float32, 1}=Float32[])::Float32
if tree.degree == 0
if tree.constant
return tree.val
else
return x[tree.val]
end
elseif tree.degree == 1
return tree.op(evalTree(tree.l, x))
else
return tree.op(evalTree(tree.l, x), evalTree(tree.r, x))
end
end
# Count the operators, constants, variables in an equation
function countNodes(tree::Node)::Integer
if tree.degree == 0
return 1
elseif tree.degree == 1
return 1 + countNodes(tree.l)
else
return 1 + countNodes(tree.l) + countNodes(tree.r)
end
end
# Convert an equation to a string
function stringTree(tree::Node)::String
if tree.degree == 0
if tree.constant
return string(tree.val)
else
return "x$(tree.val)"
end
elseif tree.degree == 1
return "$(tree.op)($(stringTree(tree.l)))"
else
return "$(tree.op)($(stringTree(tree.l)), $(stringTree(tree.r)))"
end
end
# Print an equation
function printTree(tree::Node)
println(stringTree(tree))
end
# Return a random node from the tree
function randomNode(tree::Node)::Node
if tree.degree == 0
return tree
end
a = countNodes(tree)
b = 0
c = 0
if tree.degree >= 1
b = countNodes(tree.l)
end
if tree.degree == 2
c = countNodes(tree.r)
end
i = rand(1:1+b+c)
if i <= b
return randomNode(tree.l)
elseif i == b + 1
return tree
end
return randomNode(tree.r)
end
# Count the number of unary operators in the equation
function countUnaryOperators(tree::Node)::Integer
if tree.degree == 0
return 0
elseif tree.degree == 1
return 1 + countUnaryOperators(tree.l)
else
return 0 + countUnaryOperators(tree.l) + countUnaryOperators(tree.r)
end
end
# Count the number of binary operators in the equation
function countBinaryOperators(tree::Node)::Integer
if tree.degree == 0
return 0
elseif tree.degree == 1
return 0 + countBinaryOperators(tree.l)
else
return 1 + countBinaryOperators(tree.l) + countBinaryOperators(tree.r)
end
end
# Count the number of operators in the equation
function countOperators(tree::Node)::Integer
return countUnaryOperators(tree) + countBinaryOperators(tree)
end
# Randomly convert an operator into another one (binary->binary;
# unary->unary)
function mutateOperator(tree::Node)::Node
if countOperators(tree) == 0
return tree
end
node = randomNode(tree)
while node.degree == 0
node = randomNode(tree)
end
if node.degree == 1
node.op = unaops[rand(1:length(unaops))]
else
node.op = binops[rand(1:length(binops))]
end
return tree
end
# Count the number of constants in an equation
function countConstants(tree::Node)::Integer
if tree.degree == 0
return convert(Integer, tree.constant)
elseif tree.degree == 1
return 0 + countConstants(tree.l)
else
return 0 + countConstants(tree.l) + countConstants(tree.r)
end
end
# Randomly perturb a constant
function mutateConstant(
tree::Node, T::Float32,
probNegate::Float32=0.01f0)::Node
# T is between 0 and 1.
if countConstants(tree) == 0
return tree
end
node = randomNode(tree)
while node.degree != 0 || node.constant == false
node = randomNode(tree)
end
bottom = 0.1f0
maxChange = T + 1.0f0 + bottom
factor = maxChange^Float32(rand())
makeConstBigger = rand() > 0.5
if makeConstBigger
node.val *= factor
else
node.val /= factor
end
if rand() > probNegate
node.val *= -1
end
return tree
end
# Evaluate an equation over an array of datapoints
function evalTreeArray(
tree::Node,
x::Array{Float32, 2})::Array{Float32, 1}
return mapslices(
(cx,) -> evalTree(tree, cx),
x,
dims=[2]
)[:, 1]
end
# Sum of square error between two arrays
function SSE(x::Array{Float32}, y::Array{Float32})::Float32
return sum(((cx,)->cx^2).(x - y))
end
# Mean of square error between two arrays
function MSE(x::Array{Float32}, y::Array{Float32})::Float32
return SSE(x, y)/size(x)[1]
end
# Score an equation
function scoreFunc(
tree::Node,
X::Array{Float32, 2},
y::Array{Float32, 1},
parsimony::Float32=0.1f0)::Float32
try
return MSE(evalTreeArray(tree, X), y) + countNodes(tree)*parsimony
catch error
return 1f9
end
end
# Add a random unary/binary operation to the end of a tree
function appendRandomOp(tree::Node)::Node
node = randomNode(tree)
while node.degree != 0
node = randomNode(tree)
end
choice = rand()
makeNewBinOp = choice < nbin/nops
if rand() > 0.5
left = Float32(randn())
else
left = rand(1:nvar)
end
if rand() > 0.5
right = Float32(randn())
else
right = rand(1:nvar)
end
if makeNewBinOp
newnode = Node(
binops[rand(1:length(binops))],
left,
right
)
else
newnode = Node(
unaops[rand(1:length(unaops))],
left
)
end
node.l = newnode.l
node.r = newnode.r
node.op = newnode.op
node.degree = newnode.degree
node.val = newnode.val
node.constant = newnode.constant
return tree
end
# Select a random node, and replace it an the subtree
# with a variable or constant
function deleteRandomOp(tree::Node)::Node
node = randomNode(tree)
# Can "delete" variable or constant too
if rand() > 0.5
val = Float32(randn())
else
val = rand(1:nvar)
end
newnode = Node(val)
node.l = newnode.l
node.r = newnode.r
node.op = newnode.op
node.degree = newnode.degree
node.val = newnode.val
node.constant = newnode.constant
return tree
end
# Go through one simulated annealing mutation cycle
# exp(-delta/T) defines probability of accepting a change
function iterate(
tree::Node, T::Float32,
X::Array{Float32, 2}, y::Array{Float32, 1},
alpha::Float32=1.0f0,
mult::Float32=0.1f0
)::Node
prev = deepcopy(tree)
mutationChoice = rand()
weight_for_constant = min(8, countConstants(tree))
weights = [weight_for_constant, 1, 1, 1, 2]
weights /= sum(weights)
cweights = cumsum(weights)
n = countNodes(tree)
if mutationChoice < cweights[1]
tree = mutateConstant(tree, T)
elseif mutationChoice < cweights[2]
tree = mutateOperator(tree)
elseif mutationChoice < cweights[3] && n < maxsize
tree = appendRandomOp(tree)
elseif mutationChoice < cweights[4]
tree = deleteRandomOp(tree)
else
tree = tree
end
try
beforeLoss = scoreFunc(prev, X, y, mult)
afterLoss = scoreFunc(tree, X, y, mult)
delta = afterLoss - beforeLoss
probChange = exp(-delta/(T*alpha))
if isnan(afterLoss) || probChange < rand()
return prev
end
return tree
catch error
# Sometimes too many chained exp operators
if isa(error, DomainError)
return prev
else
throw(error)
end
end
end
# Create a random equation by appending random operators
function genRandomTree(length::Integer)::Node
tree = Node(1.0f0)
for i=1:length
tree = appendRandomOp(tree)
end
return tree
end
# Define a member of population by equation, score, and age
mutable struct PopMember
tree::Node
score::Float32
birth::Float32
PopMember(t) = new(t, scoreFunc(t, X, y, parsimony), Float32(time())-1.6f9)
end
# A list of members of the population, with easy constructors,
# which allow for random generation of new populations
mutable struct Population
members::Array{PopMember, 1}
n::Integer
Population(pop::Array{PopMember, 1}) = new(pop, size(pop)[1])
Population(npop::Integer) = new([PopMember(genRandomTree(3)) for i=1:npop], npop)
Population(npop::Integer, nlength::Integer) = new([PopMember(genRandomTree(nlength)) for i=1:npop], npop)
end
# Sample 10 random members of the population, and make a new one
function samplePop(pop::Population)::Population
idx = rand(1:pop.n, ns)
return Population(pop.members[idx])#Population(deepcopy(pop.members[idx]))
end
# Sample the population, and get the best member from that sample
function bestOfSample(pop::Population)::PopMember
sample = samplePop(pop)
best_idx = argmin([sample.members[member].score for member=1:sample.n])
return sample.members[best_idx]
end
# Return best 10 examples
function bestSubPop(pop::Population)::Population
best_idx = sortperm([pop.members[member].score for member=1:pop.n])
return Population(pop.members[best_idx[1:10]])
end
# Mutate the best sampled member of the population
function iterateSample(pop::Population, T::Float32)::PopMember
allstar = bestOfSample(pop)
new = iterate(allstar.tree, T, X, y, alpha, parsimony)
allstar.tree = new
allstar.score = scoreFunc(new, X, y, parsimony)
allstar.birth = Float32(time()) - 1.6f9
return allstar
end
# Pass through the population several times, replacing the oldest
# with the fittest of a small subsample
function regEvolCycle(pop::Population, T::Float32)::Population
for i=1:Integer(pop.n/ns)
baby = iterateSample(pop, T)
#printTree(baby.tree)
oldest = argmin([pop.members[member].birth for member=1:pop.n])
pop.members[oldest] = baby
end
return pop
end
# Cycle through regularized evolution many times,
# printing the fittest equation every 10% through
function run(
pop::Population,
ncycles::Integer,
annealing::Bool=false;
verbose::Integer=0
)::Population
pop = deepcopy(pop)
allT = LinRange(1.0f0, 0.0f0, ncycles)
for iT in 1:size(allT)[1]
if annealing
pop = regEvolCycle(pop, allT[iT])
else
pop = regEvolCycle(pop, 1.0f0)
end
if verbose > 0 && (iT % verbose == 0)
# Get best 10 models from each evolution. Copy because we re-assign later.
bestPops = bestSubPop(pop)
bestCurScoreIdx = argmin([bestPops.members[member].score for member=1:bestPops.n])
bestCurScore = bestPops.members[bestCurScoreIdx].score
println(bestCurScore, " is the score for ", stringTree(bestPops.members[bestCurScoreIdx].tree))
end
end
return pop
end
|