Spaces:
Running
Running
File size: 3,805 Bytes
222fbf0 edbcfa6 222fbf0 460af25 edbcfa6 71ed397 c6a43c4 1068831 deeb73e f072863 efb57c1 f072863 fadaa8d f072863 460af25 fadaa8d 3dc1350 fadaa8d 3dc1350 fadaa8d f072863 deeb73e 6644c43 deeb73e ad955c1 c6a43c4 f072863 bd3106e f072863 8614da9 f072863 454ec0a 6644c43 ea8fece 6644c43 ea8fece f072863 8614da9 f072863 454ec0a f072863 8614da9 3dc1350 f072863 454ec0a f072863 fadaa8d 3dc1350 f072863 8614da9 454ec0a 8614da9 f072863 edbcfa6 f072863 edbcfa6 222fbf0 f072863 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
import gradio as gr
import os
import tempfile
import pandas as pd
empty_df = pd.DataFrame(
{
"equation": [],
"loss": [],
"complexity": [],
}
)
os.system("bash install_pysr.sh")
def greet(
file_obj: tempfile._TemporaryFileWrapper,
col_to_fit: str,
niterations: int,
maxsize: int,
binary_operators: list,
unary_operators: list,
force_run: bool,
):
if col_to_fit == "":
return (
empty_df,
"Please enter a column to predict!",
)
if len(binary_operators) == 0 and len(unary_operators) == 0:
return (
empty_df,
"Please select at least one operator!",
)
if file_obj is None:
return (
empty_df,
"Please upload a CSV file!",
)
# Look at some statistics of the file:
df = pd.read_csv(file_obj.name)
if len(df) == 0:
return (
empty_df,
"The file is empty!",
)
if len(df.columns) == 1:
return (
empty_df,
"The file has only one column!",
)
if col_to_fit not in df.columns:
return (
empty_df,
f"The column to predict, {col_to_fit}, is not in the file!"
f"I found {df.columns}.",
)
if len(df) > 1000 and not force_run:
return (
empty_df,
"You have uploaded a file with more than 2000 rows. "
"This will take very long to run. "
"Please upload a subsample of the data, "
"or check the box 'Ignore Warnings'.",
)
binary_operators = str(binary_operators).replace("'", '"')
unary_operators = str(unary_operators).replace("'", '"')
os.system(
f"python run_pysr_and_save.py "
f"--niterations {niterations} "
f"--maxsize {maxsize} "
f"--binary_operators '{binary_operators}' "
f"--unary_operators '{unary_operators}' "
f"--col_to_fit {col_to_fit} "
f"--filename {file_obj.name}"
)
df = pd.read_csv("pysr_output.csv")
error_log = open("error.log", "r").read()
return df, error_log
def main():
demo = gr.Interface(
fn=greet,
description="Symbolic Regression with PySR. Watch search progress by clicking 'See logs'!",
inputs=[
gr.inputs.File(label="Upload a CSV File"),
gr.inputs.Textbox(label="Column to Predict", placeholder="y"),
gr.inputs.Slider(
minimum=1,
maximum=1000,
default=40,
label="Number of Iterations",
step=1,
),
gr.inputs.Slider(
minimum=7,
maximum=35,
default=20,
label="Maximum Complexity",
step=1,
),
gr.inputs.CheckboxGroup(
choices=["+", "-", "*", "/", "^"],
label="Binary Operators",
default=["+", "-", "*", "/"],
),
gr.inputs.CheckboxGroup(
choices=[
"sin",
"cos",
"exp",
"log",
"square",
"cube",
"sqrt",
"abs",
"tan",
],
label="Unary Operators",
default=[],
),
gr.inputs.Checkbox(
default=False,
label="Ignore Warnings",
),
],
outputs=[
"dataframe",
gr.outputs.Textbox(label="Error Log"),
],
)
# Add file to the demo:
demo.launch()
if __name__ == "__main__":
main()
|