File size: 3,805 Bytes
222fbf0
edbcfa6
222fbf0
460af25
edbcfa6
71ed397
 
 
 
 
 
 
c6a43c4
1068831
 
deeb73e
f072863
 
 
 
efb57c1
f072863
 
fadaa8d
f072863
 
460af25
 
 
 
 
 
 
 
 
 
 
 
 
 
fadaa8d
 
 
 
 
 
 
 
 
 
 
 
3dc1350
 
 
 
 
 
fadaa8d
 
 
 
 
 
3dc1350
fadaa8d
f072863
deeb73e
 
 
 
 
6644c43
deeb73e
 
 
 
 
ad955c1
 
 
c6a43c4
 
f072863
 
 
bd3106e
f072863
8614da9
 
 
f072863
 
454ec0a
6644c43
ea8fece
6644c43
 
 
 
 
ea8fece
 
f072863
8614da9
f072863
 
454ec0a
f072863
8614da9
3dc1350
 
 
 
 
 
 
 
 
 
 
f072863
454ec0a
f072863
fadaa8d
 
 
3dc1350
f072863
8614da9
454ec0a
 
8614da9
f072863
 
edbcfa6
f072863
edbcfa6
222fbf0
f072863
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import gradio as gr
import os
import tempfile
import pandas as pd

empty_df = pd.DataFrame(
    {
        "equation": [],
        "loss": [],
        "complexity": [],
    }
)

os.system("bash install_pysr.sh")


def greet(
    file_obj: tempfile._TemporaryFileWrapper,
    col_to_fit: str,
    niterations: int,
    maxsize: int,
    binary_operators: list,
    unary_operators: list,
    force_run: bool,
):
    if col_to_fit == "":
        return (
            empty_df,
            "Please enter a column to predict!",
        )
    if len(binary_operators) == 0 and len(unary_operators) == 0:
        return (
            empty_df,
            "Please select at least one operator!",
        )
    if file_obj is None:
        return (
            empty_df,
            "Please upload a CSV file!",
        )
    # Look at some statistics of the file:
    df = pd.read_csv(file_obj.name)
    if len(df) == 0:
        return (
            empty_df,
            "The file is empty!",
        )
    if len(df.columns) == 1:
        return (
            empty_df,
            "The file has only one column!",
        )
    if col_to_fit not in df.columns:
        return (
            empty_df,
            f"The column to predict, {col_to_fit}, is not in the file!"
            f"I found {df.columns}.",
        )
    if len(df) > 1000 and not force_run:
        return (
            empty_df,
            "You have uploaded a file with more than 2000 rows. "
            "This will take very long to run. "
            "Please upload a subsample of the data, "
            "or check the box 'Ignore Warnings'.",
        )

    binary_operators = str(binary_operators).replace("'", '"')
    unary_operators = str(unary_operators).replace("'", '"')
    os.system(
        f"python run_pysr_and_save.py "
        f"--niterations {niterations} "
        f"--maxsize {maxsize} "
        f"--binary_operators '{binary_operators}' "
        f"--unary_operators '{unary_operators}' "
        f"--col_to_fit {col_to_fit} "
        f"--filename {file_obj.name}"
    )
    df = pd.read_csv("pysr_output.csv")
    error_log = open("error.log", "r").read()
    return df, error_log


def main():
    demo = gr.Interface(
        fn=greet,
        description="Symbolic Regression with PySR. Watch search progress by clicking 'See logs'!",
        inputs=[
            gr.inputs.File(label="Upload a CSV File"),
            gr.inputs.Textbox(label="Column to Predict", placeholder="y"),
            gr.inputs.Slider(
                minimum=1,
                maximum=1000,
                default=40,
                label="Number of Iterations",
                step=1,
            ),
            gr.inputs.Slider(
                minimum=7,
                maximum=35,
                default=20,
                label="Maximum Complexity",
                step=1,
            ),
            gr.inputs.CheckboxGroup(
                choices=["+", "-", "*", "/", "^"],
                label="Binary Operators",
                default=["+", "-", "*", "/"],
            ),
            gr.inputs.CheckboxGroup(
                choices=[
                    "sin",
                    "cos",
                    "exp",
                    "log",
                    "square",
                    "cube",
                    "sqrt",
                    "abs",
                    "tan",
                ],
                label="Unary Operators",
                default=[],
            ),
            gr.inputs.Checkbox(
                default=False,
                label="Ignore Warnings",
            ),
        ],
        outputs=[
            "dataframe",
            gr.outputs.Textbox(label="Error Log"),
        ],
    )
    # Add file to the demo:

    demo.launch()


if __name__ == "__main__":
    main()