Spaces:
Sleeping
Sleeping
File size: 4,592 Bytes
9c31a35 3d7c303 9bfcbfa dca02e2 3d7c303 7d4300a 9c31a35 51a6b05 9c31a35 7d4300a 9c31a35 51a6b05 9c31a35 7d4300a 9c31a35 7d4300a c7187a6 9bfcbfa b07eb2d 7d4300a dca02e2 7d4300a 9bfcbfa 7d4300a 9bfcbfa dca02e2 7d4300a c7187a6 dca02e2 9bfcbfa dca02e2 9bfcbfa 7d4300a c7187a6 7d4300a 9bfcbfa 962c25c 932dcf5 962c25c d4d95e5 c3a1736 d4d95e5 dca02e2 d4d95e5 c7187a6 dca02e2 c3a1736 d398bf9 c3a1736 d4d95e5 c7187a6 d4d95e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
import unittest
import numpy as np
import pandas as pd
from pysr import sympy2torch, PySRRegressor
import torch
import sympy
class TestTorch(unittest.TestCase):
def setUp(self):
np.random.seed(0)
def test_sympy2torch(self):
x, y, z = sympy.symbols("x y z")
cosx = 1.0 * sympy.cos(x) + y
X = torch.tensor(np.random.randn(1000, 3))
true = 1.0 * torch.cos(X[:, 0]) + X[:, 1]
torch_module = sympy2torch(cosx, [x, y, z])
self.assertTrue(
np.all(np.isclose(torch_module(X).detach().numpy(), true.detach().numpy()))
)
def test_pipeline_pandas(self):
X = pd.DataFrame(np.random.randn(100, 10))
equations = pd.DataFrame(
{
"Equation": ["1.0", "cos(x1)", "square(cos(x1))"],
"MSE": [1.0, 0.1, 1e-5],
"Complexity": [1, 2, 3],
}
)
equations["Complexity MSE Equation".split(" ")].to_csv(
"equation_file.csv.bkup", sep="|"
)
model = PySRRegressor(
model_selection="accuracy",
equation_file="equation_file.csv",
extra_sympy_mappings={},
output_torch_format=True,
)
# Because a model hasn't been fit via the `fit` method, some
# attributes will not/cannot be set. For the purpose of
# testing, these attributes will be set manually here.
model.fit(X, y=np.ones(X.shape[0]), from_equation_file=True)
model.refresh()
tformat = model.pytorch()
self.assertEqual(str(tformat), "_SingleSymPyModule(expression=cos(x1)**2)")
np.testing.assert_almost_equal(
tformat(torch.tensor(X.values)).detach().numpy(),
np.square(np.cos(X.values[:, 1])), # Selection 1st feature
decimal=4,
)
def test_pipeline(self):
X = np.random.randn(100, 10)
equations = pd.DataFrame(
{
"Equation": ["1.0", "cos(x1)", "square(cos(x1))"],
"MSE": [1.0, 0.1, 1e-5],
"Complexity": [1, 2, 3],
}
)
equations["Complexity MSE Equation".split(" ")].to_csv(
"equation_file.csv.bkup", sep="|"
)
model = PySRRegressor(
model_selection="accuracy",
equation_file="equation_file.csv",
extra_sympy_mappings={},
output_torch_format=True,
)
model.fit(X, y=np.ones(X.shape[0]), from_equation_file=True)
model.refresh()
tformat = model.pytorch()
self.assertEqual(str(tformat), "_SingleSymPyModule(expression=cos(x1)**2)")
np.testing.assert_almost_equal(
tformat(torch.tensor(X)).detach().numpy(),
np.square(np.cos(X[:, 1])), # 2nd feature
decimal=4,
)
def test_mod_mapping(self):
x, y, z = sympy.symbols("x y z")
expression = x**2 + sympy.atanh(sympy.Mod(y + 1, 2) - 1) * 3.2 * z
module = sympy2torch(expression, [x, y, z])
X = torch.rand(100, 3).float() * 10
true_out = (
X[:, 0] ** 2 + torch.atanh(torch.fmod(X[:, 1] + 1, 2) - 1) * 3.2 * X[:, 2]
)
torch_out = module(X)
np.testing.assert_array_almost_equal(
true_out.detach(), torch_out.detach(), decimal=4
)
def test_custom_operator(self):
X = np.random.randn(100, 3)
equations = pd.DataFrame(
{
"Equation": ["1.0", "mycustomoperator(x1)"],
"MSE": [1.0, 0.1],
"Complexity": [1, 2],
}
)
equations["Complexity MSE Equation".split(" ")].to_csv(
"equation_file_custom_operator.csv.bkup", sep="|"
)
model = PySRRegressor(
model_selection="accuracy",
equation_file="equation_file_custom_operator.csv",
extra_sympy_mappings={"mycustomoperator": sympy.sin},
extra_torch_mappings={"mycustomoperator": torch.sin},
output_torch_format=True,
)
model.fit(X, y=np.ones(X.shape[0]), from_equation_file=True)
model.refresh()
self.assertEqual(str(model.sympy()), "sin(x1)")
# Will automatically use the set global state from get_hof.
tformat = model.pytorch()
self.assertEqual(str(tformat), "_SingleSymPyModule(expression=sin(x1))")
np.testing.assert_almost_equal(
tformat(torch.tensor(X)).detach().numpy(),
np.sin(X[:, 1]),
decimal=4,
)
|