Spaces:
Sleeping
Sleeping
File size: 3,174 Bytes
9c31a35 3d7c303 9bfcbfa 3d7c303 7d4300a 9c31a35 51a6b05 9c31a35 7d4300a 9c31a35 51a6b05 9c31a35 7d4300a 9c31a35 7d4300a 9bfcbfa b07eb2d 7d4300a 9bfcbfa 7d4300a 9bfcbfa 7d4300a d4d95e5 7d4300a 9bfcbfa 7d4300a 9bfcbfa 962c25c d4d95e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
import unittest
import numpy as np
import pandas as pd
from pysr import sympy2torch, get_hof
import torch
import sympy
class TestTorch(unittest.TestCase):
def setUp(self):
np.random.seed(0)
def test_sympy2torch(self):
x, y, z = sympy.symbols("x y z")
cosx = 1.0 * sympy.cos(x) + y
X = torch.tensor(np.random.randn(1000, 3))
true = 1.0 * torch.cos(X[:, 0]) + X[:, 1]
torch_module = sympy2torch(cosx, [x, y, z])
self.assertTrue(
np.all(np.isclose(torch_module(X).detach().numpy(), true.detach().numpy()))
)
def test_pipeline(self):
X = np.random.randn(100, 10)
equations = pd.DataFrame(
{
"Equation": ["1.0", "cos(x0)", "square(cos(x0))"],
"MSE": [1.0, 0.1, 1e-5],
"Complexity": [1, 2, 3],
}
)
equations["Complexity MSE Equation".split(" ")].to_csv(
"equation_file.csv.bkup", sep="|"
)
equations = get_hof(
"equation_file.csv",
n_features=2, # TODO: Why is this 2 and not 3?
variables_names="x1 x2 x3".split(" "),
extra_sympy_mappings={},
output_torch_format=True,
multioutput=False,
nout=1,
selection=[1, 2, 3],
)
tformat = equations.iloc[-1].torch_format
np.testing.assert_almost_equal(
tformat(torch.tensor(X)).detach().numpy(),
np.square(np.cos(X[:, 1])), # Selection 1st feature
decimal=4,
)
def test_mod_mapping(self):
x, y, z = sympy.symbols("x y z")
expression = x ** 2 + sympy.atanh(sympy.Mod(y + 1, 2) - 1) * 3.2 * z
module = sympy2torch(expression, [x, y, z])
X = torch.rand(100, 3).float() * 10
true_out = (
X[:, 0] ** 2 + torch.atanh(torch.fmod(X[:, 1] + 1, 2) - 1) * 3.2 * X[:, 2]
)
torch_out = module(X)
np.testing.assert_array_almost_equal(
true_out.detach(), torch_out.detach(), decimal=4
)
def test_custom_operator(self):
X = np.random.randn(100, 3)
equations = pd.DataFrame(
{
"Equation": ["1.0", "mycustomoperator(x0)"],
"MSE": [1.0, 0.1],
"Complexity": [1, 2],
}
)
equations["Complexity MSE Equation".split(" ")].to_csv(
"equation_file_custom_operator.csv.bkup", sep="|"
)
equations = get_hof(
"equation_file_custom_operator.csv",
n_features=3,
variables_names="x1 x2 x3".split(" "),
extra_sympy_mappings={"mycustomoperator": sympy.sin},
extra_torch_mappings={"mycustomoperator": torch.sin},
output_torch_format=True,
multioutput=False,
nout=1,
selection=[0, 1, 2],
)
tformat = equations.iloc[-1].torch_format
np.testing.assert_almost_equal(
tformat(torch.tensor(X)).detach().numpy(),
np.sin(X[:, 0]), # Selection 1st feature
decimal=4,
)
|